首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.  相似文献   

2.
Theory predicts that positive heterozygosity‐fitness correlations (HFCs) arise as a consequence of inbreeding, which is often assumed to have a strong impact in small, fragmented populations. Yet according to empirical data, HFC in such populations seem highly variable and unpredictable. We here discuss two overlooked phenomena that may contribute to this variation. First, in a small population, each generation may consist of a few families. This generates random correlations between particular alleles and fitness (AFCs, allele‐fitness correlations) and results in too liberal tests for HFC. Second, in some contexts, small populations receiving immigrants may be more impacted by outbreeding depression than by inbreeding depression, resulting in negative rather than positive HFC. We investigated these processes through a case study in tadpole cohorts of Pelodytes punctatus living in small ponds. We provide evidence for a strong family structure and significant AFC in this system, as well as an example of negative HFC. By simulations, we show that this negative HFC cannot be a spurious effect of family structure, and therefore reflects outbreeding depression in the studied population. Our example suggests that a detailed examination of AFC and HFC patterns can provide valuable insights into the internal genetic structure and sources of fitness variation in small populations.  相似文献   

3.
Leimu R  Kloss L  Fischer M 《Ecology letters》2008,11(10):1101-1110
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.  相似文献   

4.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

5.
In some species, populations with few founding individuals can be resilient to extreme inbreeding. Inbreeding seems to be the norm in the common bed bug, Cimex lectularius, a flightless insect that, nevertheless, can reach large deme sizes and persist successfully. However, bed bugs can also be dispersed passively by humans, exposing inbred populations to gene flow from genetically distant populations. The introduction of genetic variation through this outbreeding could lead to increased fitness (heterosis) or be costly by causing a loss of local adaptation or exposing genetic incompatibility between populations (outbreeding depression). Here, we addressed how inbreeding within demes and outbreeding between distant populations impact fitness over two generations in this re‐emerging public health pest. We compared fitness traits of families that were inbred (mimicking reproduction following a founder event) or outbred (mimicking reproduction following a gene flow event). We found that outbreeding led to increased starvation resistance compared to inbred families, but this benefit was lost after two generations of outbreeding. No other fitness benefits of outbreeding were observed in either generation, including no differences in fecundity between the two treatments. Resilience to inbreeding is likely to result from the history of small founder events in the bed bug. Outbreeding benefits may only be detectable under stress and when heterozygosity is maximized without disruption of coadaptation. We discuss the consequences of these results both in terms of inbreeding and outbreeding in populations with genetic and spatial structuring, as well as for the recent resurgence of bed bug populations.  相似文献   

6.
An optimal crossing distance exists within plant populations if inbreeding and outbreeding depression operate simultaneously. In a population of tetraploid Digitalis purpurea, maternal plants were pollinated with donors at four distances: 0 (self-pollination), 1, 6 and 30 m. Lifetime fitness of F1 progeny was investigated in greenhouse experiments, and significant inbreeding and outbreeding depression were detected at five vs. three life history traits. Inbreeding depression increased at later life stages, whereas outbreeding depression was relatively constant. The existence of within-population outbreeding depression suggests substantial genetic structuring at moderate distances in D. purpurea, and corroborates recent findings of significant outbreeding depression in F1 progeny in polyploids. The moderate inbreeding depression found in this predominately outcrossing population supports the notion that effects of inbreeding are less severe in polyploids than in diploids.  相似文献   

7.
A generalized expression for coefficients of consanguinity and relationship with previous inbreeding is presented to examine various breeding strategies in subdivided populations. Conditions that would favor inbreeding are developed for: 1) nonfamilial inbreeding within a deme versus outbreeding; 2) altruistic inbreeding by females versus outbreeding; 3) sib-mating versus outbreeding; and 4) sib-mating versus nonfamilial breeding within a deme. Inbreeding behavior is advantageous under certain conditions but depends on the types of mating, the previous breeding history of the deme, the rate of accumulation of inbreeding depression, and the cost of migration. In polygynous mating systems it is genetically more advantageous for males to migrate, because female emigration may 1) leave a related male with no mate or one fewer mate, or 2) force both male and female to risk the cost of migration. Nonfamilial breeding is always a better strategy than sib-mating given previous inbreeding within the deme. Even when the cost of migration is zero, inbreeding is favored if the coefficient of relationship among relatives is greater than the ratio of the probabilities of offspring inviability to offspring viability. Although high inbreeding coefficients are probably not adaptive unless the costs of migration are great or inbreeding depression constants are small, low levels of inbreeding are advantageous in many situations. Therefore, increased genetic representation by way of inbreeding and inclusive fitness is a major component of the evolutionary process.  相似文献   

8.
When recessive mutations are the primary cause of inbreeding depression, a negative relationship between the levels of prior inbreeding and inbreeding depression is expected. We tested this prediction using 15 populations chosen a priori to represent a wide range of prior inbreeding among four closely related taxa of the Mimulus guttatus species complex. Artificially selfed and outcrossed progeny were grown under controlled growth-chamber conditions, and inbreeding depression was estimated for each population as one minus the ratio of the fitness of selfed to outcrossed progeny. Estimates of inbreeding depression varied from 0% to 68% among populations. Inbreeding coefficients, estimated from electrophoretic assay of field-collected progenies, ranged from 0.02 to 0.76. All five fitness traits displayed a negative association between inbreeding depression and the inbreeding coefficient, but only height showed a statistically significant correlation. Inbreeding depression was also not correlated with the level of genetic variability. In addition, populations with similar levels of prior inbreeding showed significant differences of inbreeding depression, whereas populations with different levels of prior inbreeding showed similar inbreeding depression. Within populations, inbreeding depression did not differ between progeny selfed one versus two generations. Our results are weakly consistent with the recessive mutation model of inbreeding depression, but suggest that additional factors, including genotype-by-environment interaction and complex modes of inheritance, may influence the expression of inbreeding depression.  相似文献   

9.
Habitat fragmentation and reduction of population size have been found to negatively affect plant reproduction in 'new rare' species that were formerly common. This has been attributed primarily to effects of increased inbreeding but also to pollen limitation. In contrast, little is known about the reproduction of 'old rare' species that are naturally restricted to small and isolated habitats and thus may have developed strategies to cope with long-term isolation and small population size. Here we study the effects of pollen source and quantity on reproduction of the 'old rare' bumblebee-pollinated herb, Astragalus exscapus. In two populations of this species, we tested for pollen autodeposition, inbreeding depression and outbreeding depression. Caged plants were left unpollinated or were pollinated with pollen from the same plant, from the same population or from a distant population (50 km). Additionally, we tested for pollen limitation by pollen supplementation in four populations of different size and density. In the absence of pollinators, plants did not produce seed whereas self-pollinated plants did. This indicates a self-compatible breeding system dependent on insect pollination. Both self-pollination and, in one of the two populations, cross-pollination with pollen from plants from the distant population resulted in a lower number of seeds per flower than cross-pollination with pollen from plants from the resident population, indicating inbreeding and outbreeding depression. Pollen addition enhanced fruit set and number of seeds per flower in three of the four populations, indicating pollen limitation. The degree of pollen limitation was lowest in the smallest but densest population. Our results suggest that, similar to 'new rare' plant species, also 'old rare' species may be at risk of inbreeding depression and pollen limitation.  相似文献   

10.
Many species suffer from anthropogenic habitat fragmentation. The resulting small and isolated populations are more prone to extinction due to, amongst others, genetic erosion, inbreeding depression and Allee-effects. Genetic rescue can help mitigate such problems, but might result in outbreeding depression. We evaluated offspring fitness after selfing and outcrossing within and among three very small and isolated remnant populations of the heterostylous plant Primula vulgaris. We used greenhouse-grown offspring from these populations to test several fitness components. One population was fixed for the pin-morph, and was outcrossed with another population in the field to obtain seeds. Genetic diversity of parent and offspring populations was studied using microsatellites. Morph and population-specific heterosis, inbreeding and outbreeding depression were observed for fruit and seed set, seed weight and cumulative fitness. Highest fitness was observed in the field-outcrossed F1-population, which also showed outbreeding depression following subsequent between-population (back)crossing. Despite outbreeding depression, fitness was still relatively high. Inbreeding coefficients indicated that the offspring were more inbred than their parent populations. Offspring heterozygosity and inbreeding coefficients correlated with observed fitness. One population is evolving homostyly, showing a thrum morph with an elongated style and high autonomous fruit and seed set. This has important implications for conservation strategies such as genetic rescue, as the mating system will be altered by the introduction of homostyles.  相似文献   

11.
Escobar JS  Nicot A  David P 《Genetics》2008,180(3):1593-1608
Understanding how parental distance affects offspring fitness, i.e., the effects of inbreeding and outbreeding in natural populations, is a major goal in evolutionary biology. While inbreeding is often associated with fitness reduction (inbreeding depression), interpopulation outcrossing may have either positive (heterosis) or negative (outbreeding depression) effects. Within a metapopulation, all phenomena may occur with various intensities depending on the focal population (especially its effective size) and the trait studied. However, little is known about interpopulation variation at this scale. We here examine variation in inbreeding depression, heterosis, and outbreeding depression on life-history traits across a full-life cycle, within a metapopulation of the hermaphroditic snail Physa acuta. We show that all three phenomena can co-occur at this scale, although they are not always expressed on the same traits. A large variation in inbreeding depression, heterosis, and outbreeding depression is observed among local populations. We provide evidence that, as expected from theory, small and isolated populations enjoy higher heterosis upon outcrossing than do large, open populations. These results emphasize the need for an integrated theory accounting for the effects of both deleterious mutations and genetic incompatibilities within metapopulations and to take into account the variability of the focal population to understand the genetic consequences of inbreeding and outbreeding at this scale.  相似文献   

12.
In mixed-mating plant populations, one can estimate the relative fitness of selfed progeny w by measuring the inbreeding coefficient F and selfing rate s of adults of one generation, together with F of adults in the following generation (after selection). In the first application of this multigenerational method, we estimated F and s for adults over three consecutive generations in adjacent populations of two annual Mimulus taxa: the outbreeding M. guttatus and the inbreeding M. platycalyx. This gave estimates of w for the last two generations. Although average multilocus selfing rates were high in both taxa (0.63 in M. guttatus; 0.84 in M. platycalyx), the relative fitness of selfed progeny averaged only 0.19 in M. guttatus and 0.32 in M. platycalyx. An alternative estimator for w that incorporates biparental inbreeding gave even lower estimates of w. These values are significantly below the 0.5 threshold thought to favor selfing, and show that partially selfing populations can harbor substantial genetic load. In accordance with the purging hypothesis, the more highly selfing M. platycalyx showed marginally lower inbreeding depression than M. guttatus in both years (P = 0.08). Inbreeding depression and selfing rates also varied among years in concert among taxa. Several sources of bias are discussed, but computer simulations indicate it is unlikely that w is biased downwards by linkage of marker loci to load loci.  相似文献   

13.
Depending on its genetic causes, outbreeding depression in quantitative characters may occur first in the free-living F1 generation produced by a wide cross. In 1981–1985, we generated F1 progenies by hand-pollinating larkspurs (Delphinium nelsonii) with pollen from 1-m, 3-m, 10-m, or 30-m distances. From the spatial genetic structure indicated by previous electrophoretic and reciprocal transplantation studies, we estimate that these crosses range from being inbred (f ≈ 0.06) to outbred. We planted 594 seeds from 66 maternal sibships under natural conditions. As of 1992, there was strong evidence for both inbreeding depression and outbreeding depression. Progeny from intermediate crossing distances grew approximately twice as large as more inbred or outbred progeny in the first 5 yr after planting (P = 0.013, repeated measures ANOVA), and survived almost 1 yr longer on average (contrast of 3-m and 10-m treatments versus 1 m and 30 m; P = 0.028, ANOVA). Twenty maternal sibships produced flowering individuals; only four and two of these represented 1-m and 30-m crossing distances, respectively (P = 0.021, G-test). The cumulative fitness of intermediate distance sibships averaged about twice that of 1-m sibships, and five to eight times that of 30-m sibships (P = 0.017, ANOVA). Thus, even though progeny of 1-m crosses were inbred to a degree only about one-eighth that of selling, inbreeding depression approximated 50%, and outbreeding depression equaled or exceeded 50% for all fitness components.  相似文献   

14.
The effect of inbreeding and outbreeding depression on the evolution of assortment are often considered separately. For instance, inbreeding depression is usually thought to shape selfing rates whereas outbreeding depression is commonly thought to affect the evolution of assortative mating. In this article, we consider the evolution of assortment in a context of local adaptation and we show that it is a typical situation in which both effects act simultaneously to shape the degree of selfing or assortative mating. More specifically, we show that selection on a modifier of mating can be partitioned into three distinct effects: a transmission advantage, an association to heterozygosity (proportional to inbreeding depression), and an association to beneficial alleles (proportional to outbreeding depression), so that random mating may evolve even with strong local adaptation. In addition, we show that it is necessary to carefully delimit the conditions for polymorphism at local adaptation locus to study the evolution of assortment. In particular, the range of parameters most favorable to the maintenance of polymorphism corresponds to situations favoring less assortment.  相似文献   

15.
Mean d2 is a recently devised microsatellite-based measure that is hypothesised to allow the detection of inbreeding depression and heterosis in free-living populations. Two studies that have investigated the measure have both demonstrated an association between mean d2 and traits related to fitness. Here we present an association between mean d1 and an important component of fitness, first-year overwinter survival, in a population of red deer on the Isle of Rum, Scotland. The association between survival and mean d2 differed between males and females. As predicted, outbred female calves (high mean d2) survived better than those that were inbred (low mean d2). However, the association was in the opposite direction in male calves. We suggest that this difference is due to different early growth strategies between the sexes. The association between mean d2 and survival was not significantly influenced by any single locus. Decomposition of mean d2 into a recent inbreeding component and an outbreeding component showed that it was the degree of outbreeding that influenced survival in males and both the degree of outbreeding and recent inbreeding that influenced survival in females. Our analyses suggest that mean d2 is an easy-to-calculate measure of inbreeding and degree of outbreeding that can reveal interesting interactions between genetics and ecology.  相似文献   

16.
The effects of one and two generations of inbreeding were studied in plants from four natural populations of the annual plant, Collinsia heterophylla, using inbred and outcrossed plants generated by hand pollinations to create expected inbreeding coefficients ranging from 0–0.75. The selfing rates of the populations were estimated using allozyme markers to range from 0.37–0.69. Inbreeding depression was mild, ranging from 5–40%, but significant effects were detected for characters measured at all stages of the life cycle. Fitness components declined significantly with the inbreeding coefficient, and regression of fitness characters on inbreeding coefficients gave no evidence of any strongly synergistic effects attributable to the different genetic factors that contribute to decline in fitness under inbreeding. The magnitude of inbreeding depression did not clearly decrease with the populations' levels of inbreeding. This is not surprising because the selfing rates are similar enough that it is unlikely that the populations have been characterized for long periods of time by these different inbreeding levels.  相似文献   

17.
Theory and empirical study produce clear links between mating system evolution and inbreeding depression. The connections between mating systems and outbreeding depression, whereby fitness is reduced in crosses of less related individuals, however, are less well defined. Here we investigate inbreeding and outbreeding depression in self‐fertile androdioecious nematodes, focusing on Caenorhabditis sp. 11. We quantify nucleotide polymorphism for nine nuclear loci for strains throughout its tropical range, and find some evidence of genetic differentiation despite the lowest sequence diversity observed in this genus. Controlled crosses between strains from geographically separated regions show strong outbreeding depression, with reproductive output of F1s reduced by 36% on average. Outbreeding depression is therefore common in self‐fertilizing Caenorhabditis species, each of which evolved androdioecious selfing hermaphroditism independently, but appears strongest in C. sp. 11. Moreover, the poor mating efficiency of androdioecious males extends to C. sp. 11. We propose that self‐fertilization is a key driver of outbreeding depression, but that it need not evolve as a direct result of local adaptation per se. Our verbal model of this process highlights the need for formal theory, and C. sp. 11 provides a convenient system for testing the genetic mechanisms that cause outbreeding depression, negative epistasis, and incipient speciation.  相似文献   

18.
We investigated the mating system and population genetic structure of the beetle, Coccotrypes dactyliperda, with life history characteristics that suggest the presence of a stable mixed‐mating system. We examined the genetic structure of seven populations in Israel and found significant departures from the Hardy–Weinberg equilibrium and an excess of homozygosity. Inbreeding coefficients were highly variable across populations, suggesting that low levels of outbreeding occur in nature. Experiments were conducted to determine whether the observed high inbreeding in these populations is the result of a reproductive assurance strategy. Females reared in the laboratory took longer to mate with males from the same population (inbreeding) than with males from a different population (outbreeding). These results suggest that females delayed inbreeding, and were more inclined to outbreed when possible. Thus inbreeding, which predominates in most populations, may be due to a shortage of mates for outbreeding rather than a preference for inbreeding. We conclude that C. dactyliperda has a mixed‐mating system that may be maintained by a reproductive assurance strategy.  相似文献   

19.
Optimal outbreeding theory predicts fitness benefits to intermediate levels of inbreeding. In the present study, we test for linear (consistent with inbreeding depression) and nonlinear (consistent with optimal outbreeding) effects of inbreeding on reproductive fitness in male and female Drosophila melanogaster . We found linear declines in fitness associated with increased inbreeding for egg-to-adult viability, but not the number of eggs laid or sperm competitive ability. Egg-to-adult viability was also lower in the progeny of inbred males and females mated to unrelated individuals. However, there was no evidence for optimal fitness at intermediate levels of inbreeding for any trait. The present study highlights the importance of considering biologically realistic levels of inbreeding and cross-generational effects when investigating the costs and benefits of mating with relatives.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 501–510.  相似文献   

20.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号