首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Found in inflammatory zone (FIZZ)1, also known as resistin-like molecule alpha, belongs to a novel class of cysteine-rich secreted protein family, named FIZZ/resistin-like molecule, with unique tissue expression patterns. FIZZ1 is induced in alveolar type II epithelial cells (AECs) in bleomycin (BLM)-induced lung fibrosis, and found to induce myofibroblast differentiation in vitro. The objective of this study was to elucidate the regulation of AEC FIZZ1 expression in pulmonary fibrosis. AECs were isolated from rat lungs and the effects of a number of cytokines on FIZZ1 expression were evaluated by RT-PCR. Of all cytokines examined, only IL-4 and IL-13 were effective in stimulating FIZZ1 expression in AECs. Stimulation by IL-4/IL-13 was accompanied by increases in phosphorylated STAT6 and JAK1. FIZZ1 expression was also stimulated by transfection with a STAT6 expression plasmid, but was inhibited by antisense oligonucleotides directed against STAT6. In vivo studies showed that compared with wild-type controls, both IL-4- and IL-13-deficient mice showed reduced BLM-induced lung FIZZ1 expression and fibrosis, which were essentially abolished in IL-4 and IL-13 doubly deficient mice. Furthermore, STAT6-deficient mice showed marked reduction in BLM-induced lung FIZZ1 expression. Thus, IL-4 and IL-13 are potent inducers of AEC FIZZ1 expression via STAT6 and play key roles in BLM-induced lung FIZZ1 expression and fibrosis. This represents a potential mechanism by which IL-4/IL-13 could play a role in the pathogenesis of lung fibrosis.  相似文献   

2.
Pulmonary arterial hypertension (PAH) has a major effect on life expectancy with functional degeneracy of the lungs and right heart. Interleukin-13 (IL-13), one of the type 2 cytokines mainly associated with allergic diseases, has recently been reported to be associated with Schistosomiasis-associated PAH which shares pathological features with other forms of PAH, such as idiopathic PAH and connective tissue disease-associated PAH. But a direct pathological role of IL-13 in the development of PAH has not been explored. We examined the effects of recombinant human IL-13 on the function of primary human pulmonary artery endothelial cells (HPAECs) to examine how IL-13 influences exacerbation of PAH. IL-13 increased the expression of Rictor, which is a key molecule of mammalian target of rapamycin complex 2. Treatment of IL-13 induced HPAEC migration via Rictor. Rictor was directly regulated by both miR-424 and 503 (miR-424/503). Therefore, IL-13 increases Rictor level by regulating miR-424/503, causing the increase of HPAEC migration. Since enhancement of HPAEC migration in the lung is thought to be associated with PAH, these data suggest that IL-13 takes some roles in exacerbating PAH.  相似文献   

3.
In a previous study, we reported that cicaprost, a stable prostacyclin analogue can inhibit the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from activated human peripheral mononuclear blood cells (PBMCs). Since interleukin (IL-4) and IL-13 have been shown to inhibit the release of cytokines from PBMCs we tested the hypothesis that prostacyclin in combination with IL-4 or IL-13 can act synergistically to modulate the release of IL-10, generally associated with anti-inflammatory properties, and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha). For this purpose, PBMCs were isolated over Ficoll, stimulated with lipopolysaccharide (LPS) and incubated in the presence of cicaprost, IL-4 or IL-13. There was a significant reduction in TNF-alpha as well as IL-10 secretion from LPS-stimulated PBMCs following incubation with IL-4 or IL-13. In contrast, cicaprost reduced the secretion of TNF-alpha but led to a slight enhancement of IL-10 release from PBMCs. When LPS-activated PBMCs were incubated in the presence of cicaprost and IL-4 or IL-13 there was a selective, synergistic inhibition of the TNF-alpha release which was not observed for IL-10. Thus, our data suggest that prostacyclin can synergize with cytokines to selectively inhibit the release of pro-inflammatory cytokines from PBMCs.  相似文献   

4.
5.
Accumulating evidence has demonstrated that hydrogen sulphide (H2S) is involved in the pathogenesis of various respiratory diseases. In the present study, we established a rat model of passive smoking and investigated whether or not H2S has protective effects against pulmonary fibrosis induced by chronic cigarette smoke exposure. Rat lung tissues were stained with haematoxylin‐eosin and Masson's trichrome. The expression of type I collagen was detected by immunohistochemistry. Oxidative stress was evaluated by detecting serum levels of malondialdehyde, superoxide dismutase and glutathione peroxidase and measuring reactive oxygen species generation in lung tissue. Inflammation was assessed by measuring serum levels of inflammatory cytokines, including high‐sensitivity C‐reactive protein, tumour necrosis factor‐α, interleukin (IL)‐1β and IL‐6. The protein expression of Nrf2, NF‐κB and phosphorylated mitogen‐activated protein kinases (MAPKs) in the pulmonary tissue was determined by Western blotting. Our findings indicated that administration of NaHS (a donor of H2S) could protect against pulmonary fibrosis in the smoking rats. H2S was found to induce the nuclear accumulation of Nrf2 in lung tissue and consequently up‐regulate the expression of antioxidant genes HO‐1 and Trx‐1 in the smoking rats. Moreover, H2S could also reduce cigarette smoking‐induced inflammation by inhibiting the phosphorylation of ERK 1/2, JNK and p38 MAPKs and negatively regulating NF‐κB activation. In conclusion, our study suggests that H2S has protective effects against pulmonary fibrosis in the smoking rats by attenuating oxidative stress and inflammation.  相似文献   

6.
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.  相似文献   

7.
Allergic diseases, including asthma, represent a major threat to human health. Over the three last decades, their incidence has risen in western countries. Aspirin treatment has been shown to improve allergic diseases, especially asthma, and the decreased use of aspirin has been hypothesized to contribute to the increase in childhood asthma. Because salicylate compounds suppress a number of enzymatic activities, and signaling through IL-4R participates in the development of allergic responses, we tested the effect of salicylates on IL-4 signal transduction. We found that treatment of cell lines and primary cells with aspirin and salicylates, but not acetaminophen, inhibited the activation of STAT6 by IL-4 and IL-13. This effect correlated with the inhibition of IL-4-induced CD23 expression. Although salicylates inhibited the in vivo activation of Janus kinases, their kinase activity was not affected in vitro by salicylates, suggesting that other kinases were involved in IL-4-induced STAT6 activation. Furthermore, we found that an Src kinase was involved in STAT6 activation because 1) Src kinase activity was induced by IL-4, 2) Src kinase activity, but not Janus kinase, was inhibited by salicylates in vitro, 3) cells expressing viral Src had constitutive STAT6 phosphorylation, and 4) cells lacking Src showed low STAT6 phosphorylation in response to IL-4. Because STAT6 activation by IL-4 and IL-13 participates in the development of allergic diseases, our results provide a mechanism to explain the beneficial effects of aspirin and salicylate treatment of these diseases.  相似文献   

8.
As interleukin (IL)-13 and IL-4 play a major role in various diseases including asthma, allergy, and malignancies, it is desirable to generate a molecule that blocks the effects of both cytokines. We previously generated a human IL-13 mutant (IL-13E13K), which is a powerful antagonist of IL-13, blocking the biological activities of IL-13. We now show that IL-13E13K also competitively inhibits signaling and biological activities of IL-4 through type II and partially through type III IL-4 receptor (R) system. IL-13E13K completely blocked the IL-4-induced phosphorylation of STAT6 and IL-4-dependent protein synthesis in cells expressing type II and partially type III IL-4R but not type I IL- 4R. Consistent with the inhibition of biological activities, IL-13E13K inhibited IL-4 binding to type II IL-4R-expressing cells but not to type I IL-4R-expressing cells. The inhibition efficiency of IL-4 binding by IL-13E13K was relatively lower compared to wtIL-13 even though IL-13E13K bound to IL-13Ralpha1 positive cells with a similar affinity to wtIL-13. These results indicate that Glu13 in IL-13 associates with IL-4Ralpha, and mutation to lysine decreases its binding ability to IL-4Ralpha chain. IL-13E13K binds to IL- 13Ralpha1, which is shared by both IL-13R and IL-4R systems. Consequently, IL-13E13K inhibits IL-4 binding to these cells and prevents heterodimer formation between IL-13Ralpha1 and IL-4Ralpha chains. This interference by IL-13E13K blocks the biological activities of not only IL-13 but also partially of IL-4. Thus, IL-13E13K may be a useful agent for the treatment of diseases such as asthma, allergic rhinitis, and cancer, which are dependent on signaling through both IL-4 and IL-13 receptors.  相似文献   

9.
The closely related Th2 cytokines, IL-4 and IL-13, share many biological functions that are considered important in the development of allergic airway inflammation and airway hyperresponsiveness (AHR). The overlap of their functions results from the IL-4R alpha-chain forming an important functional signaling component of both the IL-4 and IL-13 receptors. Mutations in the C terminus region of the IL-4 protein produce IL-4 mutants that bind to the IL-4R alpha-chain with high affinity, but do not induce cellular responses. A murine IL-4 mutant (C118 deletion) protein (IL-4R antagonist) inhibited IL-4- and IL-13-induced STAT6 phosphorylation as well as IL-4- and IL-13-induced IgE production in vitro. Administration of murine IL-4R antagonist during allergen (OVA) challenge inhibited the development of allergic airway eosinophilia and AHR in mice previously sensitized with OVA. The inhibitory effect on airway eosinophilia and AHR was associated with reduced levels of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid as well as reduced serum levels of OVA-IGE: These observations demonstrate the therapeutic potential of IL-4 mutant protein receptor antagonists that inhibit both IL-4 and IL-13 in the treatment of allergic asthma.  相似文献   

10.
Recombinant preparations of human anti-inflammatory cytokines: IL-4, IL-13 and IL-10, inhibited LPS-induced synthesis of TNFalpha and IL-6 in the whole human blood tested in vitro. These cytokines also inhibited LPS-induced IL-6 and TNF mRNA accumulation in isolated human blood monocytes/macrophages. On the other hand, similar concentrations of IL-4 and IL-13 (but not IL-10) enhanced synthesis of IL-6 in cultured human umbilical vein endothelial cells (HUVEC). In human hepatoma HepG2 cells IL-4 and IL-13 (but not IL-10) inhibited IL-6-induced synthesis of haptoglobin. These differential responses to the tested anti-inflammatory cytokines were observed at mRNA and protein levels and may reflect cell specificities in signalling pathways and gene expression. When HUVEC and HepG2 cells were cultured together and stimulated with LPS the addition of IL-4 or IL-13 resulted in the reduction of LPS-induced and IL-6-mediated haptoglobin synthesis. Thus in co-culture the inhibitory effects of IL-4 or IL-13 on HepG2 cells prevail over stimulation of IL-6 synthesis in HUVEC.  相似文献   

11.
12.
There has been an increasing number of studies about microRNAs as key regulators in the development of hepatic fibrosis. Here, we demonstrate that miR-542-3p can promote hepatic fibrosis by downregulating the expression of bone morphogenetic protein 7 (BMP-7), which is known to antagonize transforming growth factor β1 (TGFβ1)-mediated fibrogenesis effect. The expression of miR-542-3p is increased in activated hepatic stellate cells (HSCs). Downregulation of MiR-542-3p by antisense inhibitors can inhibit HSCs activation markers, including α-smooth muscle actin (α-SMA) and collagen as well as TGFβ signaling pathways. MiR-542-3p was significantly upregulated in carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice, and downregulation of miR-542-3p by lentivirus could prevent the development of hepatic fibrosis. In addition, miR-542-3p can directly bind to the 3′-untranslated region of BMP-7 mRNA, indicating that its profibrotic effect appears to be caused by its inhibition of BMP-7. Our results suggest that downregulation of miR-542-3p prevents liver fibrosis both in vitro and in vivo, highlighting its potential as a novel biomarker or therapeutic target for hepatic fibrosis.  相似文献   

13.
14.
Using natural killer T (NKT) cell-deficient mice, we show here that allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma, does not develop in the absence of V(alpha)14i NKT cells. The failure of NKT cell-deficient mice to develop AHR is not due to an inability of these mice to produce type 2 T-helper (Th2) responses because NKT cell-deficient mice that are immunized subcutaneously at non-mucosal sites produce normal Th2-biased responses. The failure to develop AHR can be reversed by the adoptive transfer of tetramer-purified NKT cells producing interleukin (IL)-4 and IL-13 to Ja281(-/-) mice, which lack the invariant T-cell receptor (TCR) of NKT cells, or by the administration to Cd1d(-/-) mice of recombinant IL-13, which directly affects airway smooth muscle cells. Thus, pulmonary V(alpha)14i NKT cells crucially regulate the development of asthma and Th2-biased respiratory immunity against nominal exogenous antigens. Therapies that target V(alpha)14i NKT cells may be clinically effective in limiting the development of AHR and asthma.  相似文献   

15.
The mechanisms regulating IL-4 mRNA stability in differentiated T cells are not known. We found that early exposure of CD4+ T cells to endogenous IL-4 increased IL-4 mRNA stability. This effect of IL-4 was mediated by the RNA-binding protein HuR. IL-4 mRNA interacted with HuR and the dominant binding site was shown within the coding region of IL-4 mRNA. Exposure of CD4+ T cells to IL-4 had no effects on HuR expression or subcellular localization, but triggered HuR binding to IL-4 mRNA. Thus, IL-4 plays a positive role in maintaining IL-4 mRNA stability in CD4+ T cells via a HuR-mediated mechanism.  相似文献   

16.
IL-4 receptor alpha-chain-deficient (IL-4Ralpha-/-) mice were generated by homologous and site-specific recombination, using the Cre/loxP system in BALB/c-derived embryonic stem cells. In vitro analysis of cells from these mice revealed impaired IL-4- and IL-13-mediated functions, demonstrating that the IL-4Ralpha-chain is an essential component of both the IL-4 and the IL-13 receptor. Whereas Leishmania major-infected BALB/c mice developed fatal progressive disease with type 2 Ab responses within 3 mo, both IL-4Ralpha-/- and IL-4-/- BALB/c mice contained infection with reduced footpad swelling, parasite load, moderate histopathology, and type 1 Ab responses during this time period. Conclusively, these results demonstrate an IL-4-dependent mechanism of susceptibility in BALB/c mice. Nevertheless, in contrast to mutant mice, infected C57BL/6 mice healed completely within 3 mo, indicating that additional factors are necessary for subsequent healing and elimination of the pathogen. During the further course of infection, IL-4Ralpha-/- mice developed progressive disease with massive footpad swelling. Lesions became ulcerative and necrotic with subsequent destruction of connective tissue and bones, as well as dissemination into organs and consequent mortality within the monitored 6 mo of chronic infection. In striking contrast, IL-4-/- mice maintained control of infection on a moderate level, but were unable to clear the pathogen. The distinct phenotypes of the BALB/c embryonic stem cell-derived IL-4-/- and IL-4Ralpha-/- mouse strains identify previously unsuspected mechanisms for maintaining host immunity to chronic infection with L. major, mediated by a functional IL-13 receptor.  相似文献   

17.
18.
Interleukin (IL)-13 is a major inducer of fibrosis in many chronic infectious and autoimmune diseases. In studies of the mechanisms underlying such induction, we found that IL-13 induces transforming growth factor (TGF)-beta(1) in macrophages through a two-stage process involving, first, the induction of a receptor formerly considered to function only as a decoy receptor, IL-13Ralpha(2). Such induction requires IL-13 (or IL-4) and tumor necrosis factor (TNF)-alpha. Second, it involves IL-13 signaling through IL-13Ralpha(2) to activate an AP-1 variant containing c-jun and Fra-2, which then activates the TGFB1 promoter. In vivo, we found that prevention of IL-13Ralpha(2) expression reduced production of TGF-beta(1) in oxazolone-induced colitis and that prevention of IL-13Ralpha(2) expression, Il13ra2 gene silencing or blockade of IL-13Ralpha(2) signaling led to marked downregulation of TGF-beta(1) production and collagen deposition in bleomycin-induced lung fibrosis. These data suggest that IL-13Ralpha(2) signaling during prolonged inflammation is an important therapeutic target for the prevention of TGF-beta(1)-mediated fibrosis.  相似文献   

19.
Pulmonary fibrosis is the pathologic basis for a variety of incurable human chronic lung diseases. IL-17A, a glycoprotein secreted from IL-17-producing cells, has recently been shown to be a proinflammatory cytokine involved in chronic inflammation and autoimmune disease. In this study, we report that IL-17A increased the synthesis and secretion of collagen and promoted the epithelial-mesenchymal transition in alveolar epithelial cells in a TGF-β1-dependent manner. Using in vivo fibrotic models, we found IL-17A expression to be elevated and IL-17A-associated signaling pathways to be activated in fibrotic lung tissues. Neutralization of IL-17A in vivo promoted the resolution of bleomycin-induced acute inflammation, attenuated pulmonary fibrosis, and increased survival. Additionally, IL-17A antagonism inhibited silica-induced chronic inflammation and pulmonary fibrosis. Targeting IL-17A resulted in a shift of the suppressive immune response in fibrotic lung tissue toward a Th1-type immune response, and it effectively induced autophagy, which promoted the autophagic degradation of collagen and autophagy-associated cell death. Moreover, IL-17A was found to attenuate the starvation-induced autophagy, and autophagy modulators regulated collagen degradation in the alveolar epithelial cells in a TGF-β1-independent manner. Administration of 3-methylamphetamine, an autophagy inhibitor, reversed the therapeutic efficacy of IL-17A antagonism in pulmonary fibrosis. Our studies indicate that IL-17A participates in the development and progression of pulmonary fibrosis in both TGF-β1-dependent and -independent manners and that the components of the IL-17A signaling pathway are potential therapeutic targets for the treatment of fibroproliferative lung diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号