首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
BACKGROUND AND AIMS: Spring ephemerals have a specific life-history trait, i.e. shoot growth and sexual reproduction occur simultaneously during a short period from snowmelt to canopy closure in deciduous forests. The aim of this study is to clarify how spring ephemerals invest resources for seed production within a restricted period. METHODS: In order to evaluate the cost of reproduction of a typical spring ephemeral species, Adonis ramosa, an experiment was conducted comprising defoliation treatments (intact, one-third and two-thirds leaf-cutting) and fruit manipulations (control, shading and removal) over two growing seasons. In addition, measurements were made of the movements of carbon assimilated via (13)C tracing. KEY RESULTS: Survival rate was high irrespective of treatments and manipulations. The proportion of flowering plants and plant size decreased as a result of the defoliation treatments over 2 years, but the fruit manipulations did not affect flowering activity or plant size. Seed set and seed number decreased as a result of fruit shading treatment, but the defoliation treatments did not affect current seed production. Individual seed weight also decreased in the second year due to fruit shading. The (13)C tracing experiment revealed that young fruits had photosynthetic ability and current photosynthetic products from leaves were mainly transferred to the below-ground parts, while translocation to fruit was very small even when fruit photosynthesis was restricted by the shading treatment. CONCLUSIONS: Current foliage photosynthetic products are largely stored in the below-ground parts for survival and future growth, and about one-third of the resources for seed production may be attained by fruit photosynthesis. Therefore, the trade-off between current seed production and subsequent growth is weak. The cost of seed production may be buffered by sufficient storage in the below-ground organs, effective photosynthesis under high irradiation and self-assimilation ability of fruits.  相似文献   

2.
Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.  相似文献   

3.
The effects of soil fertility (two levels of soil nitrogen and two levels of soil phosphorus) and mycorrhizal infection on pollen production and pollen grain size were studied in two cultivars of the common zucchini (Cucurbita pepo). Overall, soil fertility and mycorrhizal infection had significant effects on traits affecting the male function of plants (staminate flower production, pollen production per flower and pollen grain size). There were also differences between the cultivars for these male traits in all three experiments. In addition, pollen grain size decreased toward the end of the growing season. In the mycorrhiza experiment, both phosphate concentration per pollen grain and total phosphate content per anther were greater but not significantly greater in the mycorrhizal plants than in the non-mycorrhizal plants. A significant negative relationship between pollen production and pollen grain size was found in the mycorrhiza and soil phosphorus experiments, indicating that there was a trade-off between pollen production and pollen size. This study is the first to show that mycorrhizal infection has an effect on male function (pollen production and size) in addition to the well-documented effects on female function (fruit/seed production and size).  相似文献   

4.
In four field and glasshouse experiments designed to alter the supply of resources through manipulation of nutrients, root tissue, leaf area and fruit number in Alliaria petiolata (Brassicaceae), more than 99% of ovules per plant showed signs of fertilization, suggesting that seed production in this plant was not pollen limited. However, in all treatments a significant proportion of fruits and seeds did not develop to maturity. Total fruit and seed production did not differ significantly from controls when plants were given nutrient supplements at flowering. Removal of 50–75% of the root tissue in 1-yr-old plants significantly reduced fruit set, but had no effect on individual seed development. Removal of cauline leaves significantly reduced most measures of fruit and seed production, suggesting that current photosynthate is critical for fruit and seed filling. Seed maturation was significantly affected by both fruit position within an infructescence and ovule position within a fruit. Basally located fruits and ovules (within fruits) developed more mature seeds than distally positioned fruits and ovules. Plants responded to removal of basal fruits by re-allocating resources to distal fruits that would normally have aborted. Our results suggest that fruits and seeds act as reproductive sinks competing for parental photosynthate. Patterns of resource allocation within infructescences and fruits were also modified by our experiments.  相似文献   

5.
Growth and reproduction of spring ephemerals inhabiting deciduous forests progress simultaneously during a short period from snowmelt to canopy closure. To clarify the mechanism to mitigate the cost of reproduction, contributions of foliar and non-foliar photosynthetic products to seed production were examined in a spring ephemeral Gagea lutea. Leaf growth, foliar and non-foliar photosynthetic activities, and total assimilated products were compared among reproductive-intact, floral bud-removal, and vegetative plants. Translocation of current photosynthetic products to individual organs was quantified by 13CO2-trace experiment. Bulb growth was compared between hand-pollination and floral bud-removal treatments. Finally, seed set was compared between intact, leaf-clipping, and bract-clipping treatments. Fruit-forming plants retained leaves longer than vegetative and floral bud-removal plants, but the assimilative contribution of extended leaf longevity was negligible. Carbon supply by bract photosynthesis was large enough for fruit development, while carbon supply by fruit photosynthesis was offset by the high respiration loss. Foliar photosynthetic products were largely transported to bulbs, while translocation to reproductive functions was negligible. Because the floral bud-removal increased the bulb growth, lack of reproduction could lead to more storage. The leaf-clipping had no effect on seed production, while the bract-clipping significantly reduced the seed production. Therefore, current photosynthesis of leafy bracts might be a major carbon source for fruit development. This self-compensative mechanism of reproductive structure enables the continuous reproductive activity in this species.  相似文献   

6.
The effects of mycorrhizal infection, soil P availability and fruit production on the male function of reproduction were examined in two cultivars of tomato (Lycopersicon esculentum Mill.). Tomato plants were grown in a greenhouse under three treatment combinations: non‐mycorrhizal, low P (NMPO); non‐mycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). In addition, all treatment combinations were grown both with and without fruit. Fruit production decreased final leaf biomass, flower production and in vitro pollen tube growth rates, often reducing the beneficial effects of increased P uptake. Thus, fruit production diverted resources from subsequent vegetative growth, flower production and pollen development. As the growing season progressed, mean pollen production per flower and in vitro germination and tube growth decreased. Mycorrhizal infection and high soil P conditions increased final leaf biomass, flower production, mean pollen production per flower (in one cultivar) and in vitro pollen tube growth rates. Thus, mycorrhizal infection and high soil P conditions increased pollen quantity and quality, thereby enhancing fitness through the male function. Similar trends in these treatments suggested that mycorrhizal effects on the male function were largely the result of improved P acquisition.  相似文献   

7.
Two animal-pollinated hermaphrodite plants, Pedicularis siphonantha and P. longiflora , have been used to investigate factors limiting seed production in natural populations. To evaluate the potential seed abortion due to resources limitation, seed development has been observed and seed count conducted twice. Seed production per capsule has been compared when flowers have been removed and in a control group. Open pollination has been investigated and pollen supplementation undertaken to estimate the possibility of pollen limitation. Results show that seed abortion is frequent. Stigmatic pollen load is significantly higher than ovule number per ovary under open pollination for both species. Additional self and outcross pollen did not affect seed production. Flower removal significantly increases seed production per capsule, which indicates that seed production of the studied species is limited by available resources. To detect differences in seed production between flowers pollinated by self and outcross pollen, hand pollination of bagged flowers has also been conducted in natural populations of the two Pedicularis species. Compared with open pollination, hand-pollinating self-pollen decreases, while outcross pollen increases seed production per capsule. Such results suggest that inbreeding depression in the two self-compatible species may also result in partial seed abortion under open pollination if mixed pollen is deposited on the stigma. Our results also suggest that pollen interference plays an important role in low female fertility in the two Pedicularis species.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 83–89.  相似文献   

8.
Epiphytes constitute over 70% of orchid diversity, but little is known about the functioning of their mycorrhizal associations. Terrestrial orchid seeds germinate symbiotically in soil and leaf litter, whereas epiphytic orchids may be exposed to relatively high light levels from an early stage of development and often produce green seeds. This suggests that seedlings of the two groups of orchids may differ in their responses to light and requirements for mycorrhiza-supplied carbon. The interactive effects of light, exogenous carbon and mycorrhizal status on germination and growth were investigated in vitro using axenic agar microcosms for one tropical epiphyte and three geophytic orchid species. The geophytic species strongly depended on their mycorrhiza for growth and this could not be substituted by exogenous sucrose, whereas the epiphytic species achieved 95% of the mycorrhizal seedling volume when supplied with exogenous sucrose in the dark. Mycorrhiza status strongly interacted with light exposure, enabling germination. Light inhibited or severely reduced growth, especially for the terrestrial orchids in the absence of mycorrhiza. For the first time, this study showed the parallel ecological importance of mycorrhizal fungi in overcoming light inhibition of seed germination and growth in both terrestrial and epiphytic orchids.  相似文献   

9.
Ida TY  Harder LD  Kudo G 《Annals of botany》2012,109(1):237-246

Background

The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand.

Methods

To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production.

Key Results

Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly.

Conclusions

The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance.  相似文献   

10.
We constructed a carbon budget for young birch trees grown in ambient and elevated CO2 concentrations over their fourth year of growth. The annual total of net leaf photosynthesis was 110% more in elevated CO2 than in ambient CO2. However, the trees in elevated CO2 grew only 59% more biomass than the trees in ambient CO2 over the year. Modelling studies showed that larger loss of carbon from fine-root production and growth of the root-associated mycorrhiza by the trees in elevated CO2 probably accounted for all the remaining difference in net photosynthesis between the two treatments. Our modelling also showed that the fraction of net photosynthate consumed by respiration of nonleaf tissue was similar in the two CO2 treatments, and was 26% and 24% for trees in ambient and elevated CO2, respectively. Trees in elevated CO2 had 43% more leaves, and produced 110% more net photosynthate than trees in ambient CO2, even though the maximum rate of carboxylation per unit leaf nitrogen decreased by 21%. Sensitivity studies showed that down-regulation reduced the annual net photosynthetic production of the trees in elevated CO2 by only 6%. Direct effects of higher CO2 on photosynthesis and greater leaf area of the trees in elevated CO2 increased the net photosynthesis of the trees by 68% and 60%, respectively; and together accounted for most of the difference in net photosynthesis between the two treatments.  相似文献   

11.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

12.
? Premise of the study: Most studies on orchid hybrids examine separately the effects of hybridization on interactions with pollinators or with mycorrhizal fungi. Here, we simultaneously investigated both interactions in the mediterranean food-deceptive Orchis simia, O. anthropophora, and their hybrid (O. ×bergonii) and tested a possible breakdown of coevolution using a multidisciplinary approach. ? Methods: We compared leaf growth, seed viability, emitted scent, and mycorrhizal fungi (species and rate of infection) among these three taxa. ? Key results: We show that leaf surface is greater in adult hybrids than in the parental species, suggesting a heterosis effect for vegetative growth. We demonstrate that flowers of the two parental species emit well-differentiated bouquets of volatile organic compounds, while hybrids emit larger quantities, accumulating most compounds of the two parental species. However, hybrids fail to attract pollinators and have a 10 times lower fruit set. We determined that closely related Tulasnellales are mycorrhizal in the three taxa, suggesting that the mycorrhizal partner does not impair hybrid survival. We propose an interpretative model for O. ×bergonii compared with its parents. ? Conclusions: In hybrids, carbon resources normally devoted to reproduction may be reallocated to the mycorrhizal symbiosis as a result of the disruption of the pollination interaction in hybrids. Higher mycorrhizal infection may in turn enhance vegetative growth and scent emission. Such interplay between the two obligate biotic interactions yields new insights into hybridization among orchids.  相似文献   

13.
Plants subjected to increases in the supply of resource(s) limiting growth may allocate more of those resources to existing leaves, increasing photosynthetic capacity, and/or to production of more leaves, increasing whole-plant photosynthesis. The responses of three populations of the alpine willow, Salix glauca, growing along an alpine topographic sequence representing a gradient in soil moisture and organic matter, and thus potential N supply, to N amendments, were measured over two growing seasons, to elucidate patterns of leaf versus shoot photosynthetic responses. Leaf-(foliar N, photosynthesis rates, photosynthetic N-use efficiency) and shoot-(leaf area per shoot, number of leaves per shoot, stem weight, N resorption efficiency) level measurements were made to examine the spatial and temporal variation in these potential responses to increased N availability. The predominant response of the willows to N fertilization was at the shoot-level, by production of greater leaf area per shoot. Greater leaf area occurred due to production of larger leaves in both years of the experiment and to production of more leaves during the second year of fertilization treatment. Significant leaflevel photosynthetic response occurred only during the first year of treatment, and only in the dry meadow population. Variation in photosynthesis rates was related more to variation in stomatal conductance than to foliar N concentration. Stomatal conductance in turn was significantly related to N fertilization. Differences among the populations in photosynthesis, foliar N, leaf production, and responses to N fertilization indicate N availability may be lowest in the dry meadow population, and highest in the ridge population. This result is contrary to the hypothesis that a gradient of plant available N corresponds with a snowpack/topographic gradient.  相似文献   

14.
To better understand source-sink interactions, this work focusedon the influence of fruit number on leaf area and photosyntheticactivity in cantaloupe. To this end, flowers were removed over2 years on two Charentais cultivars to obtain single-fruit plantsand plants with an unrestricted fruit load (which set two tofive fruits and constituted control plants). At the whole plantscale, net photosynthesis was reduced by about 30% under highfruit load. At the leaf scale, a submodel of stomatal conductancewas fitted to the data and was included in a rectangular hyperbolamodel of leaf photosynthesis. Maximum leaf net photosynthesisaveraged 14.83 µmol CO2m-2s-1at 1000 µmol quantam-2s-1. Light use efficiency was not affected by fruit loadand equalled 0.040 mol CO2mol-1quanta. Leaf area of plants withunrestricted fruit load decreased after 24 days from pollination,while the leaf area of single-fruit plants was still increasing.The decrease was due to production of fewer new leaves per day,whereas the number of senescent leaves and the size of individualleaves were not affected by the treatment. Under high fruitload, cultivar Galoubet developed a larger projected leaf areathan cultivar Talma. Thus it is concluded that: (1) large cantaloupefruits may divert a large amount of assimilates away from, andgrow at the expense of, the canopy; and (2) photosynthesis ofthe canopy was lowered because leaf area was reduced whereasphotosynthetic rate of leaves was not altered.Copyright 1998Annals of Botany Company. Cucumis meloL., fruit load, source-sink interactions, leaf photosynthesis, canopy photosynthesis, leaf area, SLA, source strength.  相似文献   

15.
海拔对全缘叶绿绒蒿植株性状和花特征的表型选择分析   总被引:1,自引:0,他引:1  
为了研究海拔差异对植株性状、花特征表型选择的影响,以青藏高原高寒草甸的全缘叶绿绒蒿(Meconopsis integrifolia)为研究材料,于盛花期内,测定不同海拔(4 452、4 081和3 681 m)种群中个体植株性状、花特征、单果结实数并进行统计分析,采用线性回归模型估计不同海拔种群间植株性状、花特征所受的表型选择(选择差与选择梯度)。结果表明:(1)随着海拔升高,全缘叶绿绒蒿植株性状、花特征及单果结实数显著降低,海拔越高的种群中株高越矮、叶面积越小、花数越少、花越小、单果结实数越低。(2)不同海拔种群中各性状的表型选择存在差异,较低海拔(3 681 m)种群中花数、花大小具有显著的选择差和选择梯度,表现为花越多、花越大的个体雌性适合度越高;海拔较高(4 081 m)的种群中株高、叶面积及花数更容易受到选择,表现为植株越高、叶面积越大、花越多的个体雌性适合度越高;海拔最高(4 452 m)的种群中叶面积与花数的选择梯度接近显著。(3)植物性状分化伴随着海拔的变化而呈现出差异,较低海拔种群中花特征容易受到选择,而较高海拔种群中可能由于传粉者稀少、资源限制等因素使得株高、叶面积更容易受到选择。  相似文献   

16.
Psidium guajava L.) plantlets was determined during acclimatization and plant establishment. Guava plantlets were asexually propagated through tissue culture and grown in a glasshouse for 18 weeks. Half of the plantlets were inoculated with a mixed endomycorrhiza isolate from Mexico, ZAC-19, containing Glomus diaphanum, G. albidum and G. claroides. Plantlets were fertilized with modified Long Ashton nutrient solution that supplied 11 μg P ml−1. Gas exchange measurements were taken at 2, 4, 8, and 18 weeks after inoculation using a portable photosynthesis system. All micropropagated guava plantlets survived transplant shock. After 6 weeks, mycorrhizal plantlets had greater shoot growth rates and leaf production than non-mycorrhizal plantlets. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. By 18 weeks, mycorrhizal plantlets had greater shoot length, leaf area, leaf, stem, and root dry mass. However, gas exchange was comparable among treatments, in part because the container size was restricting growth of the larger mycorrhizal plantlets. Non-mycorrhizal plantlets had greater leaf area ratios and specific leaf areas than mycorrhizal plantlets. Increased leaf tissue mineral levels of P, Mg, Cu, and Mo also occurred with mycorrhizal plantlets. Roots of inoculated guava plantlets were heavily colonized with arbuscules, vesicles and endospores. Guava plantlets were highly mycotrophic with a mycorrhizal dependency index of 103%. Accepted: 27 December 1999  相似文献   

17.
The reproductive ecology of Jeffersonia diphylla (L.) Pers. (Berberidaceae) was investigated by studying its breeding system, ovule production, seed set, seed dispersal by ants and seed predation by rodents. This species flowers early in the spring and is facultatively autogamous. In a typical year fruit and seed set is high (90%), however, freezing temperatures from late spring frosts in 1983 and 1985 resulted in low fruit set (7% and 20%, respectively), and reduced seed set in those flowers that produced fruit. No differences in seed set between selfed and outcrossed flowers were observed over a two-yr period (1983–84). Ovule number per capsule increased with plant size as measured by leaf number. Seed set and seed wt were unaffected by leaf number unless leaves were removed after flowering was initiated. Jeffersonia diphylla is myrmecochorous. Ants removed seeds faster when seeds were placed in areas where J. diphylla plants were absent, suggesting that dispersal within J. diphylla populations is ant limited. Moreover, fresh (1 day old) seeds were removed by ants faster than 3 day old seeds. Seed predation by rodents prior to dehiscence from capsules is heavy in large populations (85–90%), and apparently negligible in small populations. Predation of seeds that are released from capsules is heavy (approx. 66%), particularly at night. Overall, seed predators consume about 96% of the seed crop in well established populations, but probably much less in small young populations. Hence, seedling recruitment is likely to be higher in small populations, whereas ramet production from rhizomes is the primary mode of propagation in large ones. The evolution of autogamy, early flowering, and myrmecochory are discussed in light of the results of this study.  相似文献   

18.
Plant fertility is a central subject of many questions in plant evolutionary and conservation biology. Pollen availability, abiotic resources, and flowering pattern can limit fruit and seed production. Open pollination and pollen supplementation studies are used to estimate any pollen limitation in natural populations. To study the impact of these factors on the reproductive success of Vriesea gigantea, an epiphytic bromeliad in the Atlantic Rainforest in Brazil, its fertility in four natural populations in Itapu? State Park was assessed by considering plant and inflorescence size, flower production, fruit and seed set, flower and fruit set pattern, and seed viability and germination rate. Supplemental pollination in adult plants was used to determine whether fruit production in V. gigantea is limited by reception of pollen. The results showed that V. gigantea has a high production of flowers, fruits, and seeds. Seeds are highly viable in all populations, presenting an average germination rate of 94% (SE ± 3.5). Plants of V. gigantea from Itapu? State Park are highly fertile. The high proportion of fruit and seed set after manual hand pollination indicates that the species is self-compatible. Pollination treatments showed evidence of pollinator limitation in the Itapu? State Park population.  相似文献   

19.
Summary We examined the effects of varying pollination distances on seed production and its components in three populations of the perennial lily Amianthium muscaetoxicum. We performed hand pollinations using pollen from near neighbors and from plants separated by 5, 15, and 60 meters. Pollination by near neighbors reduced fruit set and the numbers of seeds per fruit in comparison to other treatments in two of the three populations; variation in pollination distance beyond near-neighbor pollination produced no effect. In the third population, in which nearneighbor pollination did not affect seed production, nearneighbor pollination reduced seed weight by 11%, compared to other pollination distances. Seed weights from the 5-, 15-, and 60-m pollination treatments did not differ, and pollination distance did not affect seed weight in the other two populations. The effects of pollination-distance treatments explained a very small proportion of the variance in seed production and seed weight. Heterogeneity among individual plants, despite full hand pollination of every plant, accounted for much more variance (by one to two orders of magnitude) than variation in pollination distance.  相似文献   

20.
The influence of vesicular–arbuscular mycorrhizal (M) colonization on biomass production and photosynthesis of Trifolium repens L. was investigated in two experiments in which the foliar nitrogen and phosphorus contents of non-mycorrhizal (NM) plants were manipulated to be no lower than that of M plants. Throughout both experiments there was a stimulation in the rate of CO2 assimilation of the youngest, fully expanded leaf of M compared with NM plants. In addition, M plants exhibited a higher specific leaf area compared with NM plants, a response that maximized the area available for CO2 assimilation per unit of carbon (C) invested. Despite the increased rate of photosynthesis in M plants there was no evidence that the additional C gained was converted to biomass production of M plants. It is suggested that this additional C gained by colonized plants was allocated to the mycorrhizal fungus and that it is the fungus, by acting as a sink for assimilates, that facilitated the stimulation in the rate of photosynthesis of the plant partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号