首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch ( Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 746–758.  相似文献   

2.
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color pattern polymorphisms and shows evidence of genetic structuring among regional populations, and the taxonomic status of regional populations has repeatedly been debated. We test whether observed structure is evidence for discrete gene flow barriers that might indicate isolation or instead reflects clinal variation associated with spatially limited dispersal in a complex landscape. We first consider color pattern variation and identify geographical patterns of B. bifarius color variation using cluster analysis. We then use climate data and a comprehensive set of B. bifarius natural history records with an existing genetic data set to model the distribution of environmentally suitable habitat in western North America and predict pathways of potential gene flow using circuit theory. Resistance distances among populations that incorporate environmental suitability information predict patterns of genetic structure much better than geographic distance or Bayesian clustering alone. Results suggest that there may not be barriers to gene flow warranting further taxonomic considerations, but rather that the arrangement of suitable habitat at broad scales limits dispersal sufficiently to explain observed levels of population differentiation in B. bifarius.  相似文献   

3.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

4.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

5.
Unlike populations of many terrestrial species, marine populations often are not separated by obvious, permanent barriers to gene flow. When species have high dispersal potential and few barriers to gene flow, allopatric divergence is slow. Nevertheless, many marine species are of recent origin, even in taxa with high dispersal potential. To understand the relationship between genetic structure and recent species formation in high dispersal taxa, we examined population genetic structure among four species of sea urchins in the tropical Indo-West Pacific that have speciated within the past one to three million years. Despite high potential for gene flow, mtDNA sequence variation among 200 individuals of four species in the urchin genus Echinometra shows a signal of strong geographic effects. These effects include (1) substantial population heterogeneity; (2) lower genetic variation in peripheral populations; and (3) isolation by distance. These geographic patterns are especially strong across scales of 5000-10,000 km, and are weaker over scales of 2500-5000 km. As a result, strong geographic patterns would not have been readily visible except over the wide expanse of the tropical Pacific. Surface currents in the Pacific do not explain patterns of gene flow any better than do patterns of simple spatial proximity. Finally, populations of each species tend to group into large mtDNA regions with similar mtDNA haplotypes, but these regional boundaries are not concordant in different species. These results show that all four species have accumulated mtDNA differences over similar spatial and temporal scales but that the precise geographic pattern of genetic differentiation varies for each species. These geographic patterns appear much less deterministic than in other well-known coastal marine systems and may be driven by chance and historical accident.  相似文献   

6.
Habitat fragmentation can have a range of negative demographic and genetic impacts on disturbed populations. Dispersal barriers can be created, reducing gene flow and increasing population differentiation and inbreeding in isolated habitat remnants. Aggregated retention is a form of forestry that retains patches of forests as isolated island or connected edge patches, with the aim of ‘lifeboating’ species and processes, retaining structural features and improving connectivity. Swamp rats (Rattus lutreolus) are a cover‐dependent species that are sensitive to habitat removal. We examined the effects of aggregated retention forestry and forestry roads in native wet Eucalyptus forests on swamp rat gene flow and population genetic structure. We characterized neighbourhood size in unlogged forest to provide a natural state for comparison, and examined population structure at a range of spatial scales, which provided context for our findings. Tests of pairwise relatedness indicated significant differentiation between island and edge populations in aggregated retention sites, and across roads in unlogged sites. Spatial autocorrelation suggested a neighbourhood size of 42–55 m and revealed male‐biased dispersal. We found no genetic isolation by geographical distance at larger (>2.3 km) scales and populations were all significantly differentiated. Our results suggest that removal of mature forest creates barriers for swamp rat dispersal. In particular, roads may have long‐term impacts, while harvesting of native forests is likely to create only short‐term dispersal barriers at the local scale, depending on the rate of regeneration.  相似文献   

7.
Dispersal and gene flow determine connectivity among populations, and can be studied through population genetics and phylogeography. We here review the results of such a framework for free-living marine nematodes. Although field experiments have illustrated substantial dispersal in nematodes at ecological time scales, analysis of the genetic diversity illustrated the importance of priority effects, founder effects and genetic bottlenecks for population structuring between patches <1 km apart. In contrast, only little genetic structuring was observed within an estuary (<50 km), indicating that these small scale fluctuations in genetic differentiation are stabilized over deeper time scales through extensive gene flow. Interestingly, nematode species with contrasting life histories (extreme colonizers vs persisters) or with different habitat preferences (algae vs sediment) show similar, low genetic structuring. Finally, historical events have shaped the genetic pattern of marine nematodes and show that gene flow is restricted at large geographical scales. We also discuss the presence of substantial cryptic diversity in marine nematodes, and end with highlighting future important steps to further unravel nematode evolution and diversity.  相似文献   

8.
The genetic structure of natural populations of the domestic cat was examined at the microgeographic level (in the Spanish city of Barcelona) and the macrogeographic level (in Catalonia in Spain, and in upper midwestern USA) using frequency data for seven monogenic morphological traits. At the microgeographic level in the city of Barcelona there was no evidence for nonrandom mating within colonies, and estimates of between-colony gene flow were quite high. At the macrogeographic level, the populations from Catalonia and upper midwestern USA differed in two major respects: (i) The Catalan populations were in reasonably good agreement with expectations of Hardy-Weinberg equilibrium while the North American populations showed some evidence of the Wahlund effect (overall heterozygote deficiency indicating population substructuring). (ii) In the Catalan populations, approximately fifty per cent of the genetic differentiation between populations could be explained by geographical separation while in North America only four per cent of the total differentiation was attributable to geographical distance.  相似文献   

9.
Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’ daily dispersal neighborhood where gene flow is expected to be strong.  相似文献   

10.
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine‐scale spawning movements of brown trout between their lake‐feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake‐tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non‐natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half‐sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.  相似文献   

11.
R V Adams  T M Burg 《Heredity》2015,114(2):143-154
Geological and ecological features restrict dispersal and gene flow, leading to isolated populations. Dispersal barriers can be obvious physical structures in the landscape; however microgeographic differences can also lead to genetic isolation. Our study examined dispersal barriers at both macro- and micro-geographical scales in the black-capped chickadee, a resident North American songbird. Although birds have high dispersal potential, evidence suggests dispersal is restricted by barriers. The chickadee''s range encompasses a number of physiological features which may impede movement and lead to divergence. Analyses of 913 individuals from 34 sampling sites across the entire range using 11 microsatellite loci revealed as many as 13 genetic clusters. Populations in the east were largely panmictic whereas populations in the western portion of the range showed significant genetic structure, which often coincided with large mountain ranges, such as the Cascade and Rocky Mountains, as well as areas of unsuitable habitat. Unlike populations in the central and southern Rockies, populations on either side of the northern Rockies were not genetically distinct. Furthermore, Northeast Oregon represents a forested island within the Great Basin; genetically isolated from all other populations. Substructuring at the microgeographical scale was also evident within the Fraser Plateau of central British Columbia, and in the southeast Rockies where no obvious physical barriers are present, suggesting additional factors may be impeding dispersal and gene flow. Dispersal barriers are therefore not restricted to large physical structures, although mountain ranges and large water bodies do play a large role in structuring populations in this study.  相似文献   

12.
We investigated allozyme variation and phenotypic variation in leaf shape in 15 populations of the shrub Hippocrepis emerus (Leguminosae) from the three isolated, regional populations in Scandinavia and analysed patterns of differentiation and the hierarchical structuring of diversity on different geographic scales There are pronounced geographic differences between the Norwegian and Swedish isolates of the species and most of the polymorphic allozyme loci show reciprocal fixation in the two isolates The Scandinavian populations of H emerus are not only disjunct on a macrogeographic scale but also show considerable disjunction within regions Within the Oland regional population, a central group of populations shows low levels of Inter-population differentiation the Gotland group of populations is related to this core group of Oland populations The geographically marginal populations on Oland are spatially isolated and show a higher degree of divergence between populations than does the central group of Oland populations We interpret genetic divergence between the marginal populations in terms of genetic drift - as a result of historical fluctuations in habitat availability and population size  相似文献   

13.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

14.
The assessment of population structure and genetic diversity is crucial for the management and conservation of threatened species. Natural and artificial barriers to dispersal (i.e., gene flow) increase populations’ differentiation and isolation by reducing genetic exchange and diversity. Freshwater ecosystems are highly fragmented because of human activities. Threatened species with small population sizes are more sensitive to habitat fragmentation effects. Here, we investigate the genetic population structure and gene flow among seven populations of Aphanius sophiae in the Kor Basin by using sequences of the complete Cyt b gene and otolith morphometry. The Cyt b gene showed low level of genetic variation, only 4.12% of the identified sites were variable, and 2.42% were parsimony informative. Overall, haplotype diversity was low to moderate and nucleotide diversity was low to extremely low. Fish populations exhibited high levels of genetic differentiation, suggesting limited gene flow among them. These differences were obtained not only among geographically distant populations, but also among neighboring localities. Genetic population structure was supported by the AMOVA analysis and by the haplotype network (only one of 21 haplotypes were shared by two localities). Otolith morphometric analysis was in agreement with genetic results, the two most distant and isolated populations were clearly separated, and genetically close populations showed less differences in morphometry. A significant pattern of isolation by distance was also detected among A. sophiae populations, with genetic distance more correlated with hydrological distance than with geographic distance. Results suggested that limited gene flow due to habitat fragmentation is an important factor contributing to genetic structuring and to the loss of genetic variation of A. sophiae populations. Aphanius sophiae population structure seems to be the result of habitat fragmentation and water pollution, but other factors such as introduced species should be considered. Given the high degree of genetic structuring, the definition of conservation groups is of particular importance for A. sophiae, which should be considered endangered according to the IUCN criteria. Conservation plans must recognize the genetic independence of populations and manage separately preventing the loss of locally adapted genotypes.  相似文献   

15.
Despite the role of Australian native bees in important ecological processes, surprisingly little is known of their population structuring. In this study five microsatellite loci were used to investigate genetic structuring of the allodapine bee Exoneura robusta sampled from four locations (maximum pairwise distance c . 35 km) in the Mountain Ash forests of Victoria. Although E. robusta would seem to have high dispersal ability, several analyses show significant population subdivision and a strong pattern of isolation-by-distance from which limited gene flow was inferred. Limited gene flow was not associated with inbreeding at the within-colony level, and within-colony genetic structure implied co-founding, multiple breeding pairs and some degree of reproductive skew. Strong population structure at such fine scales suggests that substantially divergent populations are likely within the extensive distribution currently ascribed to E. robusta .  相似文献   

16.
IAN J. WANG 《Molecular ecology》2009,18(18):3847-3856
Environmental variables can strongly influence a variety of intra- and inter-population processes, including demography, population structure and gene flow. When environmental conditions are particularly harsh for a certain species, investigating these effects is important to understanding how populations persist under difficult conditions. Furthermore, species inhabiting challenging environments present excellent opportunities to examine the effects of complex landscapes on population processes because these effects will often be more pronounced. In this study, I use 16 microsatellite loci to examine population structure, gene flow and demographic history in the black toad, Bufo exsul , which has one of the most restricted natural ranges of any amphibian. Bufo exsul inhabits four springs in the Deep Springs Valley high desert basin and has never been observed more than several meters from any source of water. My results reveal limited gene flow and moderately high levels of population structure ( F ST = 0.051–0.063) between all but the two closest springs. I found that the geographic distance across the arid scrub habitat between springs is significantly correlated with genetic structure when distance accounts for topography and barriers to dispersal. I also found very low effective population sizes ( N e = 7–30) and substantial evidence for historical population bottlenecks in all four populations. Together, these results suggest that the desert landscape and B.   exsul 's high habitat specificity contribute significantly to population structure and demography in this species and emphasize the importance of considering behavioural and landscape data in conservation genetic studies of natural systems.  相似文献   

17.
Habitat degradation and fragmentation are widespread phenomena in tropical regions. Negative effects on the biota are numerous, ranging from interruption of gene flow among populations, to the loss of genetic diversity within populations, to a decline in species richness over time. Orchid bees (Hymenoptera: Apidae: Euglossini) are of major conservation interest due to their function as pollinators of numerous orchid species and other tropical plants. Here, we used microsatellite markers to investigate the effects of geographic distance and habitat fragmentation on gene flow among populations. Populations of Euglossa dilemma in three geographic regions??the Yucat??n peninsula (Mexico), Veracruz (Mexico), and Florida (USA)??were genetically structured predominantly across the regions, with the strength of differentiation among populations being positively correlated with geographic distance. Within geographic regions only little substructure was found, suggesting that dispersal is substantial in the absence of geographic or ecological barriers. In a second study, patterns of genetic differentiation among eight species of Euglossa were not related to habitat fragmentation following deforestation in southern Mexico (Veracruz). Specifically, most bee populations in the 9,800?ha forest remnant of Los Tuxtlas (Volcano San Martin) were neither differentiated from, nor had less genetic diversity than, populations in near-continuous forest separated from Los Tuxtlas by 130?km of agricultural land. Either occasional long distance dispersal across open areas has buffered the expected genetic effects of fragmentation, or the history of fragmentation in southern Mexico is too recent to have caused measurable shifts in allelic composition.  相似文献   

18.
Genetic structuring of wild populations is dependent on environmental, ecological, and life‐history factors. The specific role environmental context plays in genetic structuring is important to conservation practitioners working with rare species across areas with varying degrees of fragmentation. We investigated fine‐scale genetic patterns of the federally threatened Eastern Massasauga Rattlesnake (Sistrurus catenatus) on a relatively undisturbed island in northern Michigan, USA. This species often persists in habitat islands throughout much of its distribution due to extensive habitat loss and distance‐limited dispersal. We found that the entire island population exhibited weak genetic structuring with spatially segregated variation in effective migration and genetic diversity. The low level of genetic structuring contrasts with previous studies in the southern part of the species’ range at comparable fine scales (~7 km), in which much higher levels of structuring were documented. The island population''s genetic structuring more closely resembles that of populations from Ontario, Canada, that occupy similarly intact habitats. Intrapopulation variation in effective migration and genetic diversity likely corresponds to the presence of large inland lakes acting as barriers and more human activity in the southern portion of the island. The observed genetic structuring in this intact landscape suggests that the Eastern Massasauga is capable of sufficient interpatch movements to reduce overall genetic structuring and colonize new habitats. Landscape mosaics with multiple habitat patches and localized barriers (e.g., large water bodies or roads) will promote gene flow and natural colonization for this declining species.  相似文献   

19.
The spatial genetic structure of populations is strongly influenced by current and historical patterns of gene flow and drift, which in the simplest case, is limited by geographic distance. We examined the microspatial genetic structure within 33 populations of song sparrows (Melospiza melodia) which included eight subspecies located across coastal areas in southern British Columbia (BC) and California. We also examined the effect of water barriers and local density estimates on genetic structuring. Across both regions, positive genetic structure was detectable at distances of less than 10 km. Genetic divergence was highest in Californian subspecies, perhaps due to reduced gene flow across sub-specific contact zones. In BC, populations distributed across islands displayed greater genetic structuring over similar spatial scales than those across mainland sites, supporting the prediction that water barriers reduce gene flow in this species. Our results confirm both the expectation for fine-scale genetic structure in these generally sedentary subspecies, and the role of landscape features in generating geographic variation in genetic structure.  相似文献   

20.
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal‐limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation‐by‐distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping‐stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher‐than‐expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号