首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的利用二苯并噻吩(DBT)分解菌的分离培养基从昆明捞鱼河的污泥中分离得到一株分解DBT的细菌HWXFJ2。方法通过形态观察、生理生化特征和16S rRNA基因序列分析,表明该菌属于革兰阳性菌、杆状、有荚膜,将其初步鉴定为黄色杆菌属的一株菌株;同时利用该菌株进行DBT分解能力的检测和研究。结果该菌株对DBT有较强的分解能力,在7 d和14 d对DBT分解的量分别是红球菌(Rhodococcus sp.HNCS21)的6.04倍和2.07倍。结论煤炭中的有机硫模式化合物为DBT,本研究可以为脱除煤炭中的有机硫提供理论依据,为进一步的应用提供菌种资源。  相似文献   

2.
从含硫土壤中分离筛选出一株专一性脱硫菌Fds-1,经生理生化指标和16S rRNA序列分析鉴定其属于枯草芽孢杆菌(Bacillus subtilis)。用Gibb’s试剂显色和气相色谱-质谱联用分析表明,该菌株通过“4S”途径脱除有机硫。实验发现Fds-1的最佳脱硫活性在30℃,在此温度下72h内能脱除约0.5mmol/L DBT中的有机硫。Fds-1菌株对有机硫化合物的利用情况和柴油脱硫前后烃组分比较都进一步证明该菌株适合于柴油生物脱硫。利用休止细胞对不同组分柴油的脱硫研究表明,脱硫菌株Fds-1对精制柴油中的DBT类化合物的降解能力强。因此,该菌株对精制低硫柴油的深度脱硫具有应用意义。  相似文献   

3.
专一性脱硫菌脱硫活性比较与基因保守性研究   总被引:5,自引:0,他引:5  
对几株能专一性脱除二苯并噻吩(DBT)中硫元素生成2-羟基联苯的细菌,即短芽孢杆菌(Bacillus brevis)R-6、德氏假单孢菌(Pseudomonas delafleldii)R-8、小球诺卡氏菌(Nocardia globerula)R-9、球形芽孢杆菌(Bacillus sphaericus)R-16、红平红球菌(Rhodococcus erythropolis)LSSE8-1和戈登氏菌(Gordonia nitida)LSSEJ-1展开研究。对照研究发现它们对DBT及其衍生物的代谢活性存在着一定的差异。为了从基因水平分析造成这些差别的原因,对这几株菌的脱硫基因展开了研究。根据Rhodococcus erythropolisIGTS8脱硫基因的保守区设计引物,PCR扩增了R-6、R-8的脱硫基因。测序结果表明脱硫基因高度保守,与IGTS8的相关脱硫基因相似性在99%以上。为了进一步验证不同专一性脱硫菌的脱硫基因的保守性,PCR扩增、克隆了LSSEJ-1和R-9的整个脱硫操纵子,结果表明脱硫基因在这两株菌中也是高度保守的。与IGTS8的相关脱硫基因相比较:R-9的dszA与IGTS8的dszA同源性为99.6%,LSSEJ-1的dszA与IGTS8的dszA的同源性为99.9%;R-9和LSSEJ-1的dszB的同源性与IGTS8的dszB都是99.9%;R-9的dszC与IGTS8的dszC同源性是99.9%,LSSEJ-1的dszC与IGTS8的dszC同源性为99.1%。对比研究认为专一性脱硫嗜温菌的脱硫基因的起源可能相同。  相似文献   

4.
从大庆油田土壤中分离得到1株可降解二苯并噻吩(DBT)的脱硫微生物HDBS-1,对该微生物的种属地位进行了鉴定并通过诱变手段提高了该菌株的脱硫能力。经过形态观察、生理生化特征分析及16S rDNA序列测定发现该微生物为坂崎肠杆菌(Enterobacter sakazakii),该菌种可以按特异性脱硫途径(简称4S途径)将DBT转化为2-羟基联苯(2-HBP)。利用紫外线(UV)、硫酸二乙酯(DES)和UV+DES对该菌株复合诱变后,得到菌株HDBS-4,其降解DBT生成2-HBP的能力得到了极大的提高,发酵液中2-HBP生成含量(2.574 mg/L)较原始菌株(0.434 mg/L)提高了5.93倍。  相似文献   

5.
以筛选得到的红球菌SDUZAWQ为对象,研究其在不同浓度的有机硫化合物二苯并噻吩(DBT)存在下的脱硫能力,以及在0.2mmolLDBT和不同浓度Na2SO4同时存在下的脱硫情况。当DBT浓度高达6mmolL时,菌株仍能生长,而且检测出产物2-羟基联苯(2-HBP)的存在,说明该菌株具有耐受较高浓度DBT的能力。当DBT和Na2SO4同时存在时,DBT为菌株SDUZAWQ所利用,并且也检测出2-HBP,并非如文献所报道的红球菌在无机硫存在下不代谢DBT,表明该菌株能够耐受一定浓度的无机硫酸盐。对相关脱硫基因的克隆和测序结果显示,完整脱硫基因dszABC、其上游调控序列和dszD的序列与模式菌株RhodococcuserythropolisIGTS8的同源性分别是99%、100%和100%。  相似文献   

6.
901113 用土壤分离菌从煤和油水乳浊液中除去有机硫[会,英]/Khalid, A. M.…∥Abstr. Annu. Meet. Am. Soc. Microbiol.-1989, 89 Meet.-314[译自DBA,1989,8(17),89-10331] 从受石油作用的土壤中分离出了能够降解硫芴(DBT)的细菌培养物(Oil-2)。这种细菌能利用DBT作为唯一能源。在以DBT为能源的装有2升无机盐溶液的烧瓶中进行培养,培养温度30℃。通过测定在A480时转-4-(2,3-(羟基)-苯并噻吩)-2-氧基-3-丁烯酸的特征吸收以及  相似文献   

7.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA, DszB, DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBTMO)和DBT砜单加氧酶(DszA or DBTO2MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2), FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA, DszB, DszC 和 DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA, DszB, DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%, 3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

8.
石油生物催化脱硫菌Agrobacterium tumefaciens UP3的分离筛选   总被引:8,自引:0,他引:8  
从胜利油田被原油污染的土壤中筛选到一株能有效降解模型化合物二苯并噻吩(DBT)的菌株.根据常规的形态分析、生理生化性状及16S rDNA序列分析,将其鉴定为根癌土壤杆菌(Agrobacterium tumefaciens UP3).该菌不能以十二烷、十六烷、液体石蜡和萘作为唯一碳源和能源生长,具有工业应用的潜力.对该菌株DBT降解能力的初步研究表明,54h内可将500mg/L的DBT降解至150mg/L.对降解产物的分析表明,根癌土壤杆菌降解DBT的途径与Kodama路线及4-S路线不同.  相似文献   

9.
一株生物脱硫菌株的分离、鉴定及其脱硫活性的研究   总被引:3,自引:0,他引:3  
高超  吴涓  李玉成  芮传芳 《生物学杂志》2010,27(4):39-41,34
以二苯并噻吩(DBT)为模型化合物,从火力发电厂周围的土壤和污水处理厂的活性污泥中分离得到一株能高效脱除有机硫的菌株S4,并对其进行了分子鉴定及脱硫活性的研究。应用PCR技术克隆到16S rDNA片段,核苷酸序列分析结果表明,该菌的16S rDNA的全序列与醋酸钙不动杆菌存在99%的同源性。该菌的最适脱硫温度为30℃,pH值为6~8,在此条件,该菌株对DBT的去除率可达到82%。  相似文献   

10.
石油生物脱硫菌Pseudomonas stutzeri UP-1的筛选   总被引:6,自引:0,他引:6  
以二苯并噻吩(DBT)为模型化合物,筛选到一株能有效降解DBT的菌株,根据其菌落的形态特征、生理生化特征和分子生物学鉴定方法,确定其为Pseudomonms stutzer UP1。该菌株对DBT具有较强的降解能力,降解终产物为水溶性物质。通过对降解产物的分析,初步推断DBT的降解符合Kodama机理。  相似文献   

11.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter(-1) or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 micro M) at a rate of 0.023 micro mol liter(-1) h(-1) in 36 h. Traces of 2,2'-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter(-1)), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   

12.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter−1 or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 μM) at a rate of 0.023 μmol liter−1 h−1 in 36 h. Traces of 2,2′-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter−1), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   

13.
A dibenzothiophene (DBT)-desulfurizing bacterial strain was isolated and identified as Gordona strain CYKS1. Strain CYKS1 was found to transform DBT to 2-hydroxybiphenyl via the 4S pathway and to be able to also use organic sulfur compounds other than DBT as a sole sulfur source. Its desulfurization activity was susceptible to sulfate repression. Active resting cells for desulfurization could be prepared only in the early growth phase. When two types of diesel oils, middle distillate unit feed (MDUF) and light gas oil (LGO) containing various organic sulfur compounds including DBT, were treated with resting cells of strain CYKS1 for 12 h, the total sulfur content significantly decreased, from 0.15% (wt/wt) to 0.06% (wt/wt) for MDUF and from 0.3% (wt/wt) to 0.25% (wt/wt) for LGO. The newly isolated strain CYKS1 is considered to have good potential for application in the biodesulfurization of fossil fuels.  相似文献   

14.
The transformations of 1,2,3,4-tetrahydrodibenzothiophene (THDBT) were investigated with pure cultures of hydrocarbon-degrading bacteria. Metabolites were extracted from cultures with dichloromethane (DCM) and analyzed by gas chromatography (GC) with flame photometric, mass, and Fourier transform infrared detectors. Three 1-methylnaphthalene (1-MN)-utilizing Pseudomonas strains oxidized the sulfur atom of THDBT to give the sulfoxide and sulfone. They also degraded the benzene ring to yield 3-hydroxy-2-formyl-4,5,6,7-tetrahydrobenzothiophene. A cell suspension of a cyclohexane-degrading bacterium oxidized the alicyclic ring to give a hydroxy-substituted THDBT and a ketone, and it oxidized the aromatic ring to give a phenol, but no ring cleavage products were detected. GC analyses with an atomic emission detector, using the sulfur-selective mode, were used to quantify the transformation products from THDBT and dibenzothiophene (DBT). The cyclohexane degrader oxidized 19% of the THDBT to three metabolites. The cometabolism of THDBT and DBT by the three 1-MN-grown Pseudomonas strains resulted in a much greater depletion of the condensed thiophenes than could be accounted for in the metabolites detected by GC analysis, but there was no evidence of sulfate release from DBT. These 1-MN-grown strains transiently accumulated 3-hydroxy-2-formylbenzothiophene (HFBT) from DBT, but it was subsequently degraded. On the other hand, Pseudomonas strain BT1d, which was maintained on DBT as a sole carbon source, accumulated 52% of the sulfur from DBT as HFBT over 7 days, and, in total, 82% of the sulfur from DBT was accounted for by the GC method used. Lyophilization of cultures grown on 1-MN with DBT and methyl esterification of the residues gave improved recoveries of total sulfur over that obtained by DCM extraction and GC analysis. This suggested that the further degradation of HFBT by these cultures leads to the formation of organosulfur compounds that are too polar to be extracted with DCM. We believe that this is the first attempt to quantify the products of DBT degradation by the so-called Kodama pathway.  相似文献   

15.
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.  相似文献   

16.
T Omori  L Monna  Y Saiki    T Kodama 《Applied microbiology》1992,58(3):911-915
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.  相似文献   

17.
Desulfurizations of a model oil (hexadecane containing dibenzothiophene (DBT)) and a diesel oil by immobilized DBT-desulfurizing bacterial strains, Gordona sp. CYKS1 and Nocardia sp. CYKS2, were carried out. Celite bead was used as a biosupport for cell immobilization. Seven-eight cycles of repeated-batch desulfurization were conducted for each strain. Each batch reaction was carried out for 24 h. In the case of model oil treatment with strain CYKS1, about 4.0 mM of DBT in hexadecane (0.13 g sulfur l(oil)(-1)) was desulfurized during the first batch, while 0.25 g sulfur l(oil)(-1) during the final eighth batch. The mean desulfurization rate increased from 0.24 for the first batch to 0.48 mg sulfur l(dispersion)(-1) h(-1) for the final batch. The sulfur content in the light gas oil was decreased from 3 to 2.1 g l(oil)(-1) by strain CYKS1 in the first batch. The mean desulfurization rate was 1.81 mg sulfur l(dispersion)(-1) h(-1), which decreased slightly when the batch reaction was repeated. No significant changes in desulfurization rate were observed with strain CYKS2 when the batch reaction was repeated. When the immobilized cells were stored at 4 degrees C in 0.1 M phosphate buffer (pH 7.0) for 10 days, the residual desulfurization activity was about 50 approximately 70% of the initial value.  相似文献   

18.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA,DszB,DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBT-MO)和DBT-砜单加氧酶(DszA or DBTO2-MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2),FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA,DszB,DszC和DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA,DszB,DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%,3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

19.
Gasoline-contaminated soil from Isfahan, Iran was selected to isolate a bacterium capable of desulfurizing dibenzothiophene (DBT). The isolated strain was named R1 and identified as Rhodococcus erythropolis through biochemical tests as well as sequencing of 16S rRNA gene. This strain could efficiently produce 2-hydroxybiphenyl (HBP) from DBT via the 4S metabolic pathway. The highest HBP amount was produced at 2 mM DBT with addition of glucose (10 g l(-1)), ethanol (3 g l(-1)), glycerol (2 g l(-1)) or succinate (10 g l(-1)) as carbon sources at pH 7. Highest respiration and growth rates were observed by microplate titration on 0.1 mM HBP, and addition of 0.2 mM HBP to glucose (1 g l(-1)) and DBT (0.3 mM) could inhibite the respiration of the isolate. The isolated strain could grow up to 0.4 mM of HBP when it is used with mineral sulfur as sole sulfur source. To the best of our knowledge this is the first report on a microtiter assay for the production and utilization of HBP by Rhodococcus.  相似文献   

20.
The cloned sulfur oxidation (desulfurization) genes (sox) for dibenzothiophene (DBT) from the prototype Rhodococcus sp. strain IGTS8 were used in Southern hybridization and PCR experiments to establish the DNA relatedness in six new rhodococcal isolates which are capable of utilizing DBT as a sole sulfur source for growth. The ability of these strains to desulfurize appears to be an exclusive property of a 4-kb gene locus on a large plasmid of ca. 150 kb in IGTS8 and ca. 100 kb in the other strains. Besides a difference in plasmid profile, IGTS8 is distinguishable from the other strains in at least the copy number of the insertion sequence IS1166, which is associated with the sox genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号