首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Asplund A  Edqvist PH  Schwenk JM  Pontén F 《Proteomics》2012,12(13):2067-2077
In this review, we present an update on the progress of the Human Protein Atlas, with an emphasis on strategies for validating immunohistochemistry-based protein expression patterns and on the possibilities to extend the map of protein expression patterns for cancer research projects. The objectives underlying the Human Protein Atlas include (i) the generation of validated antibodies toward a major isoform of all proteins encoded by the human genome, (ii) creating an information database of protein expression patterns in normal human tissues, in cells, and in cancer, and (iii) utilizing generated antibodies and protein expression data as tools to identify clinically useful biomarkers. The success of such an effort is dependent on the validity of antibodies as specific binders of intended targets in applications used to map protein expression patterns. The development of strategies to support specific target binding is crucial and remains a challenge as a large fraction of proteins encoded by the human genome is poorly characterized, including the approximately one-third of all proteins lacking evidence of existence. Conceivable methods for validation include the use of paired antibodies, i.e. two independent antibodies targeting different and nonoverlapping epitopes on the same protein as well as comparative analysis of mRNA expression patterns with corresponding proteins.  相似文献   

2.
人类蛋白组学草图的肺癌分子标记物初探   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的肺癌分子标记物探索通常基于基因组或者转录组研究,而基于蛋白质水平的肺癌分子标记物探索通常局限在低通量水平。质谱技术已经开始产生高通量的全局正常及癌症蛋白组。我们采用开源统计软件R对人类蛋白组学草图数据及已发表的肺癌蛋白质组学数据进行二次分析,筛选出91个潜在的候选肺癌分子标记物。基因注解分析显示候选肺癌基因富集了和代谢、TP53通路以及MicroRNA调控等相关的基因。最后,利用Human Protein Atlas数据库及Pubmed对前20候选标记物进行验证,结果显示大部分候选肺癌基因大多能够得到验证。可见数据挖掘在即将到来的质谱推动的组学大数据时代将发挥重要作用。  相似文献   

3.
The tissue microarray (TMA) technology provides the means for high-throughput analysis of multiple tissues and cells. The technique is used within the Human Protein Atlas project for global analysis of protein expression patterns in normal human tissues, cancer and cell lines. Here we present the assembly of 1 mm cores, retrieved from microscopically selected representative tissues, into a single recipient TMA block. The number and size of cores in a TMA block can be varied from approximately forty 2 mm cores to hundreds of 0.6 mm cores. The advantage of using TMA technology is that large amount of data can rapidly be obtained using a single immunostaining protocol to avoid experimental variability. Importantly, only limited amount of scarce tissue is needed, which allows for the analysis of large patient cohorts 1 2. Approximately 250 consecutive sections (4 μm thick) can be cut from a TMA block and used for immunohistochemical staining to determine specific protein expression patterns for 250 different antibodies. In the Human Protein Atlas project, antibodies are generated towards all human proteins and used to acquire corresponding protein profiles in both normal human tissues from 144 individuals and cancer tissues from 216 different patients, representing the 20 most common forms of human cancer. Immunohistochemically stained TMA sections on glass slides are scanned to create high-resolution images from which pathologists can interpret and annotate the outcome of immunohistochemistry. Images together with corresponding pathology-based annotation data are made publically available for the research community through the Human Protein Atlas portal (www.proteinatlas.org) (Figure 1) 3 4. The Human Protein Atlas provides a map showing the distribution and relative abundance of proteins in the human body. The current version contains over 11 million images with protein expression data for 12.238 unique proteins, corresponding to more than 61% of all proteins encoded by the human genome.  相似文献   

4.
5.
The systematic study of subcellular location patterns is required to fully characterize the human proteome, as subcellular location provides critical context necessary for understanding a protein's function. The analysis of tens of thousands of expressed proteins for the many cell types and cellular conditions under which they may be found creates a need for automated subcellular pattern analysis. We therefore describe the application of automated methods, previously developed and validated by our laboratory on fluorescence micrographs of cultured cell lines, to analyze subcellular patterns in tissue images from the Human Protein Atlas. The Atlas currently contains images of over 3000 protein patterns in various human tissues obtained using immunohistochemistry. We chose a 16 protein subset from the Atlas that reflects the major classes of subcellular location. We then separated DNA and protein staining in the images, extracted various features from each image, and trained a support vector machine classifier to recognize the protein patterns. Our results show that our system can distinguish the patterns with 83% accuracy in 45 different tissues, and when only the most confident classifications are considered, this rises to 97%. These results are encouraging given that the tissues contain many different cell types organized in different manners, and that the Atlas images are of moderate resolution. The approach described is an important starting point for automatically assigning subcellular locations on a proteome-wide basis for collections of tissue images such as the Atlas.  相似文献   

6.
7.
The testes are where spermatogenesis, the sperm‐generating process that is unique to men, occurs. Importantly, human spermatogenesis and tumorigenesis share key similarities. Until now, only a few proteins in the human testis have been identified due to limitations of available technology. In this paper, using an advanced proteomics platform, we have identified 7346 unique proteins within the human testis with a high degree of confidence. Immunohistochemistry data from the Human Protein Atlas database show over 90% (1833/2020) of identified proteins can be detected in the human testis using specific antibodies. To make the data widely available to the scientific community, an online Human Testis Proteome Database (HTPD, http://reprod.njmu.edu.cn/htpd/ ) was built. Many of the identified human testicular proteins are associated with human infertility, especially human testicular predominantly expressed proteins. We characterized six novel cancer/testis genes (TMPRSS12, TPPP2, PRSS55, DMRT1, PIWIL1, HEMGN), which map to cancer‐associated genetic variants positions, in both the cancer and testis tissues using genome‐wide analyses. Our results provide a molecular connection between spermatogenesis and tumorigenesis and broaden the range of cancer antigen choice available for immunotherapy.  相似文献   

8.
In the past decade, many initiatives were taken for the development of antibodies for proteome-wide studies, as well as characterisation and validation of clinically relevant disease biomarkers. Phage display offers many advantages compared to antibody generation by immunisation because it is an unlimited resource of affinity reagents without batch-to-batch variation and is also amendable for high throughput in contrast to conventional hybridoma technology. One of the major bottlenecks to proteome-wide binder selection is the limited supply of suitable target antigens representative of the human proteome. Here, we provide proof of principle of using easily accessible, cancer-associated protein epitope signature tags (PrESTs), routinely generated within the Human Protein Atlas project, as surrogate antigens for full-length proteins in phage selections for the retrieval of target-specific binders. These binders were subsequently tested in western blot, immunohistochemistry and protein microarray application to demonstrate their functionality.  相似文献   

9.
Human liver proteome project: plan, progress, and perspectives   总被引:6,自引:0,他引:6  
The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.  相似文献   

10.
11.
A proteome map of Ralstonia metallidurans strain CH34 was constructed using two-dimensional (2-D) gel electrophoresis in combination with automated Edman degradation and mass spectrometry (MS). R. metallidurans CH34 is the type-strain of a family of highly related strains characterized by their multiple resistance to millimolar amounts of heavy metals, conferred by two large plasmids. The protein content of this bacterium grown in minimal medium was separated by 2-D gel electrophoresis using various pH gradients. Protein identification was carried out via N-terminal amino acid sequencing, matrix assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) and tandem MS. So far, 224 different proteins were characterized from 352 protein spots. Although the proteome map is still not complete, one could appraise the importance of proteomics for genome analyses through (i). the identification of previously undetected open reading frames, (ii). the identification of proteins not encoded by the already sequenced genome fragments, (iii). the characterization of protein-encoding genes spanning two different contigs, enabling their merging, and (iv). the precise delineation of the N-terminus of several proteins. Finally, this map will prove a useful tool in the identification of proteins differentially expressed in the presence of different heavy metals.  相似文献   

12.
13.
14.
15.
16.
Introduction: High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward.

Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays.

Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.  相似文献   


17.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

18.
新的人类蛋白质图集4.0版本上已经含有了对应5000个人类基因的6000多种抗体。这个版本里已经拥有500多万张高分辨率的免疫组化和激光共聚焦图片。每张图片都是经过优秀的病理学家的注释,从而为功能研究提供知识储备,也可以进行正常和病理组织中蛋白质表达谱的查询和文献检索。一个新的结构实现了,它包括了所有预测的基因(大约20400个),并且带有可视化的所有编码蛋白质基因的特征。一个新的搜索工具也已经启动了,它可以执行高级检索功能,包括染色体定位、蛋白质分级和(或)组织特异性的检索。蛋白质图集作为一种搜索工具可以发现癌症诊断学的潜在生物标志物。  相似文献   

19.
The Human Phosphate Binding Protein (HPBP) is a serendipitously discovered apolipoprotein from human plasma that binds phosphate. Amino acid sequence relates HPBP to an intriguing protein family that seems ubiquitous in eukaryotes. These proteins, named DING according to the sequence of their four conserved N-terminal residues, are systematically absent from eukaryotic genome databases. As a consequence, HPBP amino acids sequence had to be first assigned from the electronic density map. Then, an original approach combining X-ray crystallography and mass spectrometry provides the complete and a priori exact sequence of the 38-kDa HPBP. This first complete sequence of a eukaryotic DING protein will be helpful to study HPBP and the entire DING protein family.  相似文献   

20.
人类糖脂转运结构域2蛋白(Glycolipid transfer protein domain containing 2, GLTPD2)是糖脂转运蛋白(Glycolipid transfer protein, GLTP)家族的一个新成员,其功能目前尚不清楚。研究的目的在于通过生物信息学分析,预测人类GLTPD2的结构、功能及其在疾病发生发展中的作用。通过UCSC Genome Browser、Human Protein Atlas及STRING等在线生物信息学分析工具对人类GLTPD2基因及其蛋白进行分析,结果表明人类GLTPD2蛋白等电点为10.19,分子量为31.6 kDa,定位于囊泡的膜蛋白,在肝、肠、肾等组织中的表达较高,可能具有糖脂转运,参与基因转录、细胞增殖及分化等功能。为进一步深入研究人类GLTPD2的生物学功能及其在疾病发生发展中的作用提供了重要的理论基础和实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号