首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Sirtuins (SIRT1–SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.  相似文献   

2.
The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp) enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity was investigated using molecular docking methods, and the interaction of phytochemicals with the RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals of N. sativa screened in this study, a significant docking score was observed for four compounds, namely α-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report that α-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our results prove that the top four potential phytochemical molecules of N. sativa, especially α-hederin, could be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and in vivo testing are required to confirm the findings of this study.  相似文献   

3.
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD?GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.  相似文献   

4.
Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ~58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed an RNase H-like fold with two magnesium ions in the nuclease active site. Mutations in TerL residues involved in magnesium coordination had a dominant-negative effect on phage growth. However, the two ions identified in the active site were too far from each other to promote two-metal-ion catalysis, suggesting a conformational change is required for nuclease activity. We also determined a 3.38 Å cryo-EM reconstruction of E217 TerS that revealed a ring-like decamer, departing from the most common nonameric quaternary structure observed thus far. E217 TerS contains both N-terminal helix-turn-helix motifs enriched in basic residues and a central channel lined with basic residues large enough to accommodate double-stranded DNA. Overexpression of TerS caused a more than a 4-fold reduction of E217 burst size, suggesting a catalytic amount of the protein is required for packaging. Together, these data expand the molecular repertoire of viral terminase subunits to Pseudomonas-phages used for phage therapy.  相似文献   

5.
6.
Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.  相似文献   

7.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

8.
The LAGLIDADG family of homing endonucleases (LHEs) bind to and cleave their DNA recognition sequences with high specificity. Much of our understanding for how these proteins evolve their specificities has come from studying LHE homologues. To gain insight into the molecular basis of LHE specificity, we characterized I-WcaI, the homologue of the Saccharomyces cerevisiae I-SceI LHE found in Wickerhamomyces canadensis. Although I-WcaI and I-SceI cleave the same recognition sequence, expression of I-WcaI, but not I-SceI, is toxic in bacteria. Toxicity suppressing mutations frequently occur at I-WcaI residues critical for activity and I-WcaI cleaves many more non-cognate sequences in the Escherichia coli genome than I-SceI, suggesting I-WcaI endonuclease activity is the basis of toxicity. In vitro, I-WcaI is a more active and a less specific endonuclease than I-SceI, again accounting for the observed toxicity in vivo. We determined the X-ray crystal structure of I-WcaI bound to its cognate target site and found that I-WcaI and I-SceI use residues at different positions to make similar base-specific contacts. Furthermore, in some regions of the DNA interface where I-WcaI specificity is lower, the protein makes fewer DNA contacts than I-SceI. Taken together, these findings demonstrate the plastic nature of LHE site recognition and suggest that I-WcaI and I-SceI are situated at different points in their evolutionary pathways towards acquiring target site specificity.  相似文献   

9.
4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and β with low nanomolar affinity and <20-fold selectivity for α over β and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERβ (compound 42; 170-fold selectivity).  相似文献   

10.
Allostery plays a primary role in regulating protein activity, making it an important mechanism in human disease and drug discovery. Identifying allosteric regulatory sites to explore their biological significance and therapeutic potential is invaluable to drug discovery; however, identification remains a challenge. Allosteric sites are often “cryptic” without clear geometric or chemical features. Since allosteric regulatory sites are often less conserved in protein kinases than the orthosteric ATP binding site, allosteric ligands are commonly more specific than ATP competitive inhibitors. We present a generalizable computational protocol to predict allosteric ligand binding sites based on unbiased ligand binding simulation trajectories. We demonstrate the feasibility of this protocol by revisiting our previously published ligand binding simulations using the first identified viral proto-oncogene, Src kinase, as a model system. The binding paths for kinase inhibitor PP1 uncovered three metastable intermediate states before binding the high-affinity ATP-binding pocket, revealing two previously known allosteric sites and one novel site. Herein, we validate the novel site using a combination of virtual screening and experimental assays to identify a V-type allosteric small-molecule inhibitor that targets this novel site with specificity for Src over closely related kinases. This study provides a proof-of-concept for employing unbiased ligand binding simulations to identify cryptic allosteric binding sites and is widely applicable to other protein–ligand systems.  相似文献   

11.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   

12.
PARP enzymes create ADP-ribose modifications to regulate multiple facets of human biology, and some prominent PARP family members are best known for the nucleic acid interactions that regulate their activities and functions. Recent structural studies have highlighted PARP interactions with nucleic acids, in particular for PARP enzymes that detect and respond to DNA strand break damage. These studies build on our understanding of how DNA break detection is linked to the catalysis of ADP-ribose modifications, provide insights into distinct modes of DNA interaction, and shed light on the mechanisms of PARP inhibitor action. PARP enzymes have several connections to RNA biology, including the detection of the genomes of RNA viruses, and recent structural work has highlighted how PARP13/ZAP specifically targets viral genomes enriched in CG dinucleotides.  相似文献   

13.
Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa’s active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.  相似文献   

14.
Herein we examine the determinants of the allosteric inhibition of the mitochondrial chaperone TRAP1 by a small molecule ligand. The knowledge generated is harnessed into the design of novel derivatives with interesting biological properties.TRAP1 is a member of the Hsp90 family of proteins, which work through sequential steps of ATP processing coupled to client-protein remodeling. Isoform selective inhibition of TRAP1 can provide novel information on the biomolecular mechanisms of molecular chaperones, as well as new insights into the development of small molecules with therapeutic potential.Our analysis of the interactions between an active first-generation allosteric ligand and TRAP1 shows how the small molecule induces long-range perturbations that influence the attainment of reactive poses in the active site. At the same time, the dynamic adaptation of the allosteric binding pocket to the presence of the first-generation compound sets the stage for the design of a set of second-generation ligands: the characterization of the formation/disappearance of pockets around the allosteric site that is used to guide optimize the ligands’ fit for the allosteric site and improve inhibitory activities. The effects of the newly designed molecules are validated experimentally in vitro and in vivo. We discuss the implications of our approach as a promising strategy towards understanding the molecular determinants of allosteric regulation in chemical and molecular biology, and towards speeding up the design of allosteric small molecule modulators.  相似文献   

15.
Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.  相似文献   

16.
Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.  相似文献   

17.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   

18.
The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. Through in vitro binding and kinetic studies using nucleosomes, we find that while the ARID domain is required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, the unstructured linker region between the ARID and PHD1 domains interacts with PHD1 and is necessary for nucleosome binding. Our data suggests a model in which the PHD1 domain inhibits DNA recognition by KDM5C. This inhibitory effect is relieved by the H3 tail, enabling recognition of flanking DNA on the nucleosome. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains break this regulation by enhancing DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering demethylase activity lower in the presence of flanking DNA. Our findings suggest a model by which specific XLID mutations could alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.  相似文献   

19.
20.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号