首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
喀斯特森林植被自然恢复过程中土壤可矿化碳库特征   总被引:9,自引:0,他引:9  
2011年9月,采用空间代替时间方法,研究了茂兰自然保护区喀斯特森林自然恢复过程中土壤可矿化碳库的特征.结果表明: 研究期间,喀斯特森林自然恢复过程中不同深度土壤的总有机碳含量、可矿化碳含量和矿化速率随土层加深而减少,随恢复的进程而增加;累积矿化排放量及其速率随恢复的进程增加,其速率随培养时间延长而减小;矿化率随恢复的进程增加,而随土层加深的变化不明显;qCO2值随恢复的进程和土层加深而递减;土壤可矿化碳与凋落物现存量及其分解质量损失率分别呈负相关(r=-0.796)和正相关(r=0.924);土壤生境由早期干扰强烈转向中后期日趋稳定,土壤的固碳能力由早期差、潜力大转向中后期强、潜力小.  相似文献   

2.
广州城郊森林公园常绿阔叶林土壤有机碳及组分特征   总被引:1,自引:0,他引:1  
习丹  旷远文 《生态科学》2019,38(1):226-232
为探讨森林公园土壤有机碳的分布特征,以广州城郊的石门国家森林公园和云髻山森林公园为研究对象,采用分层采样方法 (0—5、5—10、10—20、20—40和40—60 cm) 对天然常绿阔叶林的土壤总有机碳、惰性有机碳、易氧化有机碳、水溶性有机碳、微生物生物量碳含量进行了研究。结果表明:土壤惰性有机碳、活性有机碳及总有机碳含量随土层加深均表现下降趋势。不同组分的活性有机碳含量及其所占总有机碳比例在土壤剖面分布存在差异,均表现为易氧化有机碳>微生物生物量碳>水溶性有机碳。土壤惰性有机碳占总有机碳的比例显著高于活性有机碳,随土层加深呈先下降后增加趋势,深层土壤有利于维护有机碳的稳定性。土壤惰性有机碳、易氧化有机碳、水溶性有机碳及微生物生物量碳含量与总有机碳、微生物生物量氮含量均呈显著正相关,土壤各组分碳间转化依赖于总有机碳量的变化,同时受微生物生物量氮的支配。  相似文献   

3.
秦岭典型林分土壤活性有机碳及碳储量垂直分布特征   总被引:7,自引:0,他引:7  
采用野外调查结合室内分析的方法,2013年8月分析了秦岭典型林分锐齿栎(马头滩林区,Ⅰ)、油松(Ⅱ)、华山松(Ⅲ)、松栎混交林(Ⅳ)、云杉(Ⅴ)、锐齿栎(辛家山林区,Ⅵ)土壤剖面上活性有机碳及碳储量的分布规律.结果表明: 研究区各林分土壤的有机碳、微生物生物量碳、水溶性碳、易氧化态碳含量均随着土层深度的增加而不断减小;在整个土壤剖面(0~60 cm)上,云杉和松栎混交林的土壤有机碳和水溶性碳含量明显高于其余林分,不同林分的土壤有机碳和水溶性碳含量的平均值大小均为Ⅴ>Ⅳ>Ⅰ>Ⅱ>Ⅲ>Ⅵ;各林分不同土层的微生物生物量碳在71.25~710.05 mg·kg-1,不同林分的土壤微生物生物量碳大小依次为Ⅰ>Ⅴ>Ⅳ>Ⅲ>Ⅱ>Ⅵ;整个土壤剖面上,松栎混交林的土壤易氧化态碳含量降幅最大,不同林分土壤易氧化态碳含量的平均值大小为Ⅳ>Ⅴ>Ⅰ>Ⅱ>Ⅲ>Ⅵ.3种活性有机碳占有机碳的比例在不同林分类型中没有表现出一致的规律性.各林分0~60 cm土层的有机碳储量大小为Ⅴ>Ⅰ>Ⅳ>Ⅲ>Ⅵ>Ⅱ.各林分的土壤微生物生物量碳、水溶性碳、易氧化态碳两两之间均表现为极显著相关,各林分的土壤微生物生物量碳、水溶性碳、易氧化态碳与土壤有机碳、全氮之间的相关性均表现为显著或极显著水平,与碳氮比、pH、土壤水分、土壤容重的相关关系不显著.  相似文献   

4.
火烧迹地不同恢复方式土壤有机碳分布特征   总被引:6,自引:0,他引:6  
李红运  辛颖  赵雨森 《生态学杂志》2016,27(9):2747-2753
以大兴安岭1987年重度火烧后恢复的兴安落叶松人工林、樟子松人工林、人促杨桦林和天然次生杨桦林为对象,研究不同恢复方式林分土壤有机碳、土壤可溶性有机碳和土壤微生物生物量碳的分布特征.结果表明: 4种恢复方式林分的土壤有机碳、土壤可溶性有机碳和土壤微生物生物量碳分别为9.63~79.72 g·kg-1、33.21~186.30 mg·kg-1和200.85~1755.63 mg·kg-1,且随土层深度增加而降低.不同恢复方式间土壤有机碳、土壤可溶性有机碳和土壤微生物生物量碳差异显著,以人促杨桦林最高,兴安落叶松人工林和天然次生杨桦林次之,樟子松人工林最低.各恢复方式林分的土壤微生物熵为1.1%~2.3%,以人促杨桦林最高,樟子松人工林最低,不同林分土壤微生物熵的垂直分布特征不同.土壤微生物生物量碳与土壤有机碳、土壤可溶性有机碳含量均呈显著正相关.人促杨桦林土壤有机碳活性高于其他林分,火烧迹地采用人工促进天然恢复的方式较人工恢复和天然恢复的土壤碳循环能力更强.  相似文献   

5.
藏东南色季拉山西坡土壤有机碳库研究   总被引:8,自引:2,他引:6  
马和平  郭其强  刘合满  钱登锋 《生态学报》2013,33(10):3122-3128
土壤碳是森林生态系统最大的碳库,是其碳循环的极其重要组分.土壤微生物生物量是陆地生态系统碳循环的重要组成部分.为探讨不同森林植被类型对土壤活性有机碳库的影响,以西藏色季拉山(西坡)的高山灌丛(Alpine shrub,AS)、杜鹃林(Rhododendron forest,RF)、急尖长苞冷杉林(Abies georgei var.smithii forest,AGSF)和林芝云杉林(Picea likiangensis var.linzhiensis forest,PLLF)为试验对象,研究了林地土壤有机碳、总氮含量及微生物生物量.结果表明:高海拔植被类型具有较高的土壤活性有机碳含量和分配比例.土壤总有机碳表现在0-10cm均差异显著;在10-20cm和20-40cm无规律性(P<0.05).土壤全氮表现在0-10cm AS均差异显著,而RF、AGSF和PLLF差异不显著;在10-20cm AS、RF、AGSF与PLLF均相差显著;在20-40cm AS、RF、AGSF与PLLF均相差不显著(P<0.05).土壤微生物量碳含量与土壤总有机碳含量关系密切,呈显著的正相关.土壤微生物生物量氮含量和比例随微生物生物量碳含量和比例增加而增加.色季拉山土壤微生物量碳含量均随海拔升高而增加.在不同植被类型的生态系统中,土壤总有机碳含量、土壤颗粒有机碳和土壤易氧化碳含量均呈现出随土层深度增加而递减的变化趋势.土壤颗粒有机碳含量占土壤总有机碳含量和土壤易氧化有机碳含量占土壤总有机碳含量的比率范围不同,且随土层深度增加比率减小.土壤活性有机碳与土壤总有机碳显著相关,土壤易氧化有机碳与颗粒有机碳的相关系也比较显著(P<0.05).  相似文献   

6.
土壤有机碳尤其是活性有机碳可快速反映土壤肥力和土壤质量的恢复程度。研究了南方红壤侵蚀地3种典型人工恢复林(马尾松与阔叶复层林(Pinus massoniana-broadleaved multiple layer forest(PB))、木荷与马尾松混交林(Schima superba-Pinus massoniana mixed forest(SP))、阔叶混交林(broad-leaved mixed forest(BF)))土壤(0—60 cm)总有机碳和不同活性有机碳的垂直分布特征及其差异。结果表明:不同恢复林分土壤总有机碳(SOC)含量和有机碳储量均表现为PBSPBF,均随土层深度的增加而逐渐降低;土壤表层有机碳富集系数为0.49—0.55,表明表层土壤具有较高的有机碳恢复水平和保持强度。不同林分土壤易氧化有机碳(ROC)、水溶性有机碳(DOC)和微生物量碳(MBC)含量变化范围为0.92—9.17 g/kg、535.89—800.46 mg/kg和27.24—261.31 mg/kg,且均随土层深度的增加而降低,土壤活性有机碳含量总体以BF较高。土壤活性有机碳分配比例以ROC/SOC最高,DOC/SOC次之,MBC/SOC最低,且随土层深度的增加,ROC/SOC的值呈逐渐降低趋势,DOC/SOC的值却呈逐渐升高趋势,MBC/SOC(微生物熵)则变化规律不明显;不同林分间土壤活性有机碳分配比例以BF最高,表明阔叶混交林更有利于活性碳的积累。因此,对于红壤侵蚀地森林恢复初期,可适当密植和立体种植,以提高土壤碳储量和土壤肥力,并在马尾松等先锋树种林分中补植阔叶树种,以增加土壤活性有机碳含量,从而有利于退化生态系统土壤速效养分和土壤功能的快速恢复。  相似文献   

7.
江西官山常绿阔叶林土壤有机碳组分沿海拔的变化   总被引:5,自引:0,他引:5  
习丹  余泽平  熊勇  刘小玉  刘骏 《应用生态学报》2020,31(10):3349-3356
对江西官山国家级自然保护区不同海拔(400、600、800、1000、1200 m)常绿阔叶林土壤总有机碳、惰性有机碳和活性有机碳进行分析,研究土壤有机碳的海拔分布特征。结果表明: 土壤总有机碳、惰性有机碳及活性有机碳含量在土壤表层最高,随土层加深而逐渐下降。随海拔升高,土壤总有机碳、惰性有机碳、易氧化有机碳、微生物生物量碳及0~20 cm土层土壤颗粒有机碳含量均出现先增后降的趋势, 且在海拔1000 m达到峰值,而土壤水溶性有机碳及20~40 cm土层土壤颗粒有机碳含量无明显变化。在0~10 cm土层,土壤惰性有机碳占总有机碳的比例在海拔800和1200 m显著高于海拔400和1000 m,而土壤活性有机碳占总有机碳的比例在海拔400 m最高;土壤惰性有机碳和活性有机碳占总有机碳的比例在10~40 cm土层随海拔的增加均呈先增加后降低的趋势,峰值分别在1000和600 m处。各组分有机碳与土壤湿度、微生物生物量氮、可溶性有机氮均呈显著正相关,而且活性有机碳与铵态氮呈显著正相关。海拔显著影响常绿阔叶林土壤有机碳组分的分布,惰性有机碳、易氧化有机碳和微生物生物量碳对海拔变化的响应更敏感。高海拔土壤惰性有机碳和活性有机碳在水分和氮素充足条件下易发生分解与转化,降低土壤碳库的稳定性。在全球气温持续升高背景下,要加强高海拔地区森林土壤有机碳的动态变化研究。  相似文献   

8.
土地利用方式转变对赣中地区土壤活性有机碳的影响   总被引:1,自引:0,他引:1  
选取江西省安福县15年撂荒地和3种林地(毛竹林人工林、木荷次生林、杉木人工林),研究土地利用方式改变对土壤有机碳库以及活性有机碳的影响.结果表明:不同样地的土壤总有机碳、微生物生物量碳、热水浸提有机碳和易氧化态碳均表现为毛竹人工林>杉木人工林>木荷次生林>撂荒地;与对照(撂荒地)相比,3种林地的土壤有机碳含量、碳储量及活性有机碳含量均随土壤深度增加而递减,表层富集现象明显;不同土壤活性有机碳的分配比例明显不同,其中,土壤易氧化态碳占总有机碳的比例最大,微生物生物量碳所占比例最小,土壤总有机碳、微生物生物量碳、热水浸提有机碳和易氧化态碳间的相关性均达到极显著水平.后三者表征了土壤中活性较高部分碳的含量,对土地利用方式的响应较敏感,可以作为评价赣中地区土壤质量和肥力的指标之一.  相似文献   

9.
不同类型毛竹林土壤活性有机碳   总被引:2,自引:0,他引:2  
以江西省安福县毛竹纯林、竹阔混交林、竹杉混交林为研究对象,探讨不同类型毛竹林的土壤活性有机碳的变化.结果表明:(1)土壤总有机碳和易氧化态碳含量以毛竹纯林最高,分别为13.1和2.15 g·kg-1;微生物生物量碳和热水浸提有机碳以竹杉混交林最高,分别为123.3和349.0 mg· kg-1.(2)3种类型毛竹林土壤活性有机碳的含量均随土层深度的增加而呈现出先快后慢的下降趋势.(3)土壤总有机碳、微生物生物量碳、热水浸提有机碳和易氧化态碳之间的相关性均达到极显著水平(P<0.01),后三者在一定程度上表征了土壤中活性较高部分的碳含量.  相似文献   

10.
采用连续熏蒸-培养法,测定了福建武夷山自然保护区不同海拔高度具有代表性的中亚热带常绿阔叶林、针叶林、亚高山矮林以及高山草甸土壤中有效碳含量,分析了土壤有效碳(LOC)与微生物量碳(MBC)、土壤总有机碳(TOC)、细根生物量(FRB)和土壤全氮(TN)之间的关系.结果表明:土壤有效碳占总有机碳的3.40%~7.46%;微生物量碳只是土壤有效碳中的一部分,占土壤有效碳26.87%~80.38%;不同林分土壤有效碳含量随海拔增高而显著增大,随土层深度的增加而降低;土壤有效碳与微生物量碳、土壤总有机碳、细根生物量、土壤全氮之间呈极显著的相关关系.高海拔土壤有效碳含量显著高于低海拔土壤.  相似文献   

11.
Elevated atmospheric carbon dioxide increases soil carbon   总被引:4,自引:0,他引:4  
The general lack of significant changes in mineral soil C stocks during CO2‐enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta‐analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2–9 years, at a median rate of 19 g C m?2 yr?1. We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m?2 yr?1 for 5–8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta‐analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.  相似文献   

12.
红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征   总被引:13,自引:0,他引:13  
为了探讨我国亚热带红壤丘陵区不同利用方式下土壤有机碳(SOC)和土壤微生物生物量碳(SMB-C)含量的特征,在湖南省桃源县选取典型样区,通过密集取样,分析了红壤丘陵景观单元内水田、旱地、林地、果园4种典型利用方式下表层土壤(0~20 cm)SOC和SMB-C含量.结果表明,典型红壤丘陵景观单元中SOC含量高低的顺序为水田(16.0 g·kg-1)>旱地(11.2 g·kg-1) >果园(9.5 g·kg-1)>林地(8.4 g·kg-1),SMB-C含量则为水田(830 mg·kg-1)>旱地(361 mg·kg-1)>林地(200 mg·kg-1)>果园(186 mg·kg-1),且在不同利用方式下SOC与SMB-C均呈极显著正相关(P<0.01),说明本研究区内各土地利用类型的土壤SMB-C含量变化可以敏感地指示SOC的动态.研究结果还表明,将我国亚热带红壤丘陵林地开垦为果园或耕地后,表层土壤 SOC含量不可能降低.  相似文献   

13.
Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this ‘priming'' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.Substrate inputs can stimulate decomposition of native soil organic carbon (SOC; Kuzyakov et al., 2000), a phenomenon known as the ‘priming effect'' (Kuzyakov, 2010), and is considered large enough to influence ecosystem C balance (Wieder et al., 2013). Two functionally distinct groups of microorganisms are postulated to mediate priming: one that grows rapidly utilizing labile C, and one that grows slowly, breaking down recalcitrant SOC (Fontaine et al., 2003; Blagodatskaya et al., 2007). However, distinguishing these groups is technically challenging. Here, we used dual-stable isotope probing with 13C-glucose and 18O-water to identify bacteria in these two groups growing in response to single and repeated pulses of glucose. Organisms that utilize labile C for growth assimilate both 13C-glucose and 18O-water into their DNA, whereas organisms that grow using SOC incorporate only 18O-water. Differential isotope incorporation leads to a range of DNA densities separable through isopycnic centrifugation, which can then be characterized by sequencing (Radajewski et al., 2000).We sequenced fragments of bacterial 16S rRNA genes following single and repeated glucose pulses. We hypothesized that the single pulse of labile C would stimulate growth of opportunistic organisms, thus immobilizing nutrients and suppressing growth and diversity of the SOC-utilizing community, decreasing SOC decomposition (negative priming), a response analogous to that observed in plant communities in response to chronic N additions (Tilman, 1987; Clark and Tilman, 2008). We hypothesized that multiple glucose additions would stimulate growth of a more diverse bacterial community, including more native SOC-utilizing organisms that possess enzymes to decompose recalcitrant compounds, causing positive priming (Fontaine et al., 2003; Kuzyakov, 2010).Soil from a ponderosa pine ecosystem was amended weekly for 7 weeks with 500 μg C-glucose per gram soil (2.65 atom % 13C) in 100 μl deionized water or with 100 μl deionized water (n=5). Measurements of δ13C–CO2 and [CO2] enabled the partitioning of CO2 into that derived from added glucose or from native SOC (CSOC):where Ctotal is CO2–C from glucose-amended samples, δtotal is the δ13C–CO2 from glucose-amended samples, δglucose is the δ13C of the added glucose and δSOC is the δ13C–CO2 evolved from the non-amended samples. Priming was calculated as the difference between SOC oxidation of the amended and non-amended samples. With this approach, any evolved CO2 carrying the 13C signature of the added glucose is considered respiration of glucose, including 13C-labeled biomass and metabolites derived from prior glucose additions. Thus, this approach quantifies priming as the oxidation of SOC present at the beginning of the experiment, consistent with many other studies of priming (Cheng et al., 2003; De Graaff et al., 2010).In a parallel incubation for dual-stable isotope probing, the repeated-pulse samples received unlabeled glucose (500 μg C-glucose per gram soil) for 6 weeks while the non-amended and single-pulse samples received sterile deionized water. In week 7, samples received one of four isotope treatments (n=3): 97 atom % H2 18O (non-amended soil), 99 atom % 13C-glucose and 97 atom % H2 18O (single- and repeated-pulse soil), 12C-glucose and 97 atom % H2 18O (repeated-pulse soil) or 12C-glucose and H2 16O (repeated-pulse soil). After incubating for 7 days, soil was frozen at −40 °C. DNA was extracted, separated through isopycnic centrifugation, and two density ranges were sequenced for the bacterial 16S rRNA gene (Supplementary Figure 1): 1.731–1.746 g ml−1 (hereafter called the SOC-utilizing community) and 1.759–1.774 g ml−1 (hereafter called the glucose-utilizing community).Amplicons of the V3–V6 16S rRNA region were bar coded with broad-coverage fusion PCR primers and pooled before sequencing on a Genome Sequencer FLX instrument. These sequence data have been submitted to the GenBank database under accession number SRP043371. Data were checked for chimeras (Edgar et al., 2011), demultiplexed and quality checked (Caporaso et al., 2010). Taxonomy was assigned to genus at the ⩾80% bootstrap confidence level (Cole et al., 2009).We used the Shannon''s diversity index (H′), commonly used in microbial systems (Fierer and Jackson, 2006), to assess changes in microbial diversity. Analysis of variance was used to compare the amount of DNA within densities between isotope treatments (Supplementary Figure 2) and to test the effects of the treatments on the Shannon''s diversity (Figure 2) and Pielou''s evenness (Supplementary Figure 3) of the active bacterial communities, with post hoc Student''s t-tests, α=0.05. PRIMER 6 and PERMANOVA were used to create the nonmetric multidimensional scaling ordination and to compare bacterial communities between glucose treatments and the two sequenced density ranges.The single pulse of glucose suppressed SOC oxidation, whereas repeated pulses increased SOC oxidation (Figure 1). Few experiments to date have examined priming in response to repeated substrate amendments (Hamer and Marschner, 2005; Qiao et al., 2014), even though in nature soil receives repeated substrate pulses from litterfall and rhizodeposition. Our results demonstrate the dynamic response of SOC decomposition to repeated labile C inputs.Open in a separate windowFigure 1Weekly priming rates calculated as the difference in SOC respired between glucose-amended and non-amended soil (n=5).Dual-stable isotope probing was able to separate the growing bacteria into two groups with distinct DNA densities (P<0.001, PERMANOVA; Figure 3a), indicating differential uptake of 13C-glucose and 18O-water. In response to the initial glucose addition, the diversity of the growing glucose- and SOC-utilizing bacterial communities declined compared with the non-amended community (P<0.001, t-tests; Figure 2), driven by a strong decrease in evenness (Supplementary Figure 3). In the SOC-utilizing community, where DNA was labeled with 18O only, the relative abundance of Bacillus increased 4.9-fold compared with the non-amended control to constitute 31.6% of the community (Figure 3b). Bacillus survives well under low-nutrient conditions (Panikov, 1995), and is able to synthesize a suite of extracellular enzymes capable of degrading complex substrates (Priest, 1977), traits that are conducive for using SOC for growth. In the glucose-utilizing community, where DNA was labeled with both 13C and 18O, Arthrobacter increased 67.7-fold relative to the non-amended control to constitute 75.5% of the growing bacteria (Figure 3b). In culture experiments, Arthrobacter can rapidly take up and store glucose for later use (Panikov, 1995) and here we find it dominating the high-density DNA fractions, signifying that it is using the labeled glucose to grow. The increased biomass of Arthrobacter may have resulted in greater resource competition, thus reducing the diversity of the growing community, as is frequently found in plant communities (Bakelaar and Odum, 1978; Clark and Tilman, 2008).Open in a separate windowFigure 2Shannon''s diversity index (H′) of the non-amended, single-pulse, and repeated-pulse treatments (n=3) in the SOC- (mid-density) and glucose-utilizing (high-density) communities. Treatments with the same letter are not significantly different from each other (Student''s t, α=0.05).Open in a separate windowFigure 3(a) Nonmetric multidimensional scaling ordination showing differences in growing bacterial communities at the genus taxonomic level in the SOC-utilizing (mid-density; open symbols) and glucose-utilizing (high-density; closed symbols) groups of non-amended (Δ), single-pulse (○) and repeated-pulse (□) treatments (n=3). (b) Pie charts of genera in the SOC- and glucose-utilizing communities of the single- and repeated-pulse treatments (n=3). Genera with relative abundances >5% are listed in the figure legend.After repeated glucose amendments, the diversity of the growing community recovered to non-amendment levels (Figure 2) without strongly dominant organisms (Figure 3b and Supplementary Figure 3). The higher diversity found after repeated glucose pulses may be explained by trophic interactions where predators graze on prey populations that have been enlarged by resource addition, suppressing competition between prey species and causing secondary mobilization of nutrients (Clarholm, 1985). The decrease in total bacterial 16S rRNA gene copies in the repeated-pulse—compared with the single-pulse—treatment (Supplementary Figure 4) supports predation as a potential mechanism explaining the observed diversity increase after repeated glucose pulses.The recovery of diversity after repeated glucose pulses contrasts with resource competition theory (Tilman, 1987). When chronic additions of a limiting resource are applied, species diversity and evenness typically decrease (Bakelaar and Odum, 1978; Clark and Tilman, 2008) because competitive organisms become dominant. We observed this after the single glucose pulse, but not after repeated pulses. This diversity response may be the result of community shifts facilitated by short bacterial life cycles and the tens to hundreds of generations expected during the 7-week incubation (Behera and Wagner, 1974). In contrast, systems on which most ecological theory is based (for example, plants) might achieve perhaps 20 generations in a multi-decadal field experiment (Bakelaar and Odum, 1978; Clark and Tilman, 2008). With more generations, more community dynamics can occur, including increased resource cascades in which extracellular enzymes, metabolites or lysed cells of one functional group increase substrates for another (Blagodatskaya and Kuzyakov, 2008). Our results highlight the opportunity to test ecological theories in microbial ecosystems (Prosser et al., 2007), particularly as the short life cycles of microbes makes them well suited for pursuing ecological questions in an evolutionary framework (Jessup et al., 2004).The priming effect is ubiquitous, yet its drivers remain elusive. Our results suggest that changes in the diversity and composition of the growing bacterial community contribute to priming, and thus that ecosystem properties such as soil C storage may be sensitive to soil microbial biodiversity.  相似文献   

14.
土体呼吸输出碳来源于土壤固有有机碳和外源添加碳,而以往关于不同施肥措施对水稻土碳排放的研究少有区分碳的来源。本试验利用一个长达30年的水稻土定位试验,在保证原有定位试验继续正常开展的前提下变更部分施肥处理,得到继续施用高量有机肥(HOM)、施用常量有机肥30年后改施高量有机肥(N-H)、继续施用常量有机肥(NOM)、施用化肥30年后改施常量有机肥(C-N)、施用高量有机肥30年后改施化肥(H-C)、施用常量有机肥30年后改施化肥(N-C)、继续施用化肥(CF)等7种施肥处理。通过观测早稻生长期间原有施肥和改施肥处理土体CO2排放通量(FCO2),研究不同后续施肥对水稻土FCO2的影响,以期探讨土壤原始有机碳和外源添加碳对土壤FCO2的影响。结果表明:7种不同施肥处理土体CO2平均排放通量(F珔CO2)分别为85.34、69.10、51.27、49.15、14.89、12.92和11.59 mg C.m-2.h-1;对施用无机肥料和常量有机肥料的土体而言,土壤本身有机碳含量对F珔CO2无显著影响,但对施用高量有机肥的土体而言,土壤本身的高有机碳含量会增强F珔CO2;CO2排放通量(Y)与添加外源碳量(x)之间符合指数方程:Y=13.33e1.719 x(R2=0.967,n=21),施入的外源有机碳对土体FCO2产生极显著影响;当季外源添加碳以CO2-C矿化分解释放的碳占其总碳量的14%左右,且该分解率受土壤有机碳含量和有机物料添加量的影响较小。  相似文献   

15.
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.  相似文献   

16.
Calcium-mediated stabilisation of soil organic carbon   总被引:3,自引:0,他引:3  
Soils play an essential role in the global cycling of carbon and understanding the stabilisation mechanisms behind the preservation of soil organic carbon (SOC) pools is of globally recognised significance. Until recently, research into SOC stabilisation has predominantly focused on acidic soil environments and the interactions between SOC and aluminium (Al) or iron (Fe). The interactions between SOC and calcium (Ca) have typically received less attention, with fewer studies conducted in alkaline soils. Although it has widely been established that exchangeable Ca (CaExch) positively correlates with SOC concentration and its resistance to oxidation, the exact mechanisms behind this relationship remain largely unidentified. This synthesis paper critically assesses available evidence on the potential role of Ca in the stabilisation of SOC and identifies research topics that warrant further investigation. Contrary to the common view of the chemistry of base cations in soils, chemical modelling indicates that Ca2+ can readily exchange its hydration shell and create inner sphere complexes with organic functional groups. This review therefore argues that both inner- and outer-sphere bridging by Ca2+ can play an active role in the stabilisation of SOC. Calcium carbonate (CaCO3) can influence occluded SOC stability through its role in the stabilisation of aggregates; however, it could also play an unaccounted role in the direct sorption and inclusion of SOC. Finally, this review highlights the importance of pH as a potential predictor of SOC stabilisation mechanisms mediated by Al- or Fe- to Ca, and their respective effects on SOC dynamics.  相似文献   

17.
Summary Determinations of organic carbon on 12 carbonate-free terra rossa soil samples from Cyprus with the Walkley-Black method and the Allison reference method showed degree of carbon recovery with the Walkley-Black method ranging between 69.5 and 79.0 per cent. Determinations of organic carbon on 15 carbonaceous (21–28 per cent CaCO3) alluvial soil samples with the method of Allison gave erratic results apparently because the carbonate could not be quantitatively removed prior to organic-C determination.Finally a rapid gravimetric method for estimating calcium carbonate in soils as refined by Bauer et al. 3 was tested on the 15 alluvial soil samples mentioned above and found as precise and as accurate as the Allison reference method.  相似文献   

18.
Carbon input to soil may decrease soil carbon content   总被引:21,自引:0,他引:21  
It is commonly predicted that the intensity of primary production and soil carbon (C) content are positively linked. Paradoxically, many long‐term field observations show that although plant litter is incorporated to soil in large quantities, soil C content does not necessarily increase. These results suggest that a negative relationship between C input and soil C conservation exists. Here, we demonstrate in controlled conditions that the supply of fresh C may accelerate the decomposition of soil C and induce a negative C balance. We show that soil C losses increase when soil microbes are nutrient limited. Results highlight the need for a better understanding of microbial mechanisms involved in the complex relationship between C input and soil C sequestration. We conclude that energy available to soil microbes and microbial competition are important determinants of soil C decomposition.  相似文献   

19.
黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响   总被引:10,自引:0,他引:10  
闫丽娟  李广  吴江琪  马维伟  王海燕 《生态学报》2019,39(15):5546-5554
对黄土高原丘陵沟壑区4种典型植被(荒草地、文冠果林地、柠条灌丛、沙棘林地)进行了活性有机碳(MBC,Microbial Biomass Carbon;EOC,Easily Oxidated Carbon;POC,Particle Organic Carbon)及有机碳的测定,结果表明:4种植被土壤活性有机碳含量随着土层深度的增加呈逐渐降低的趋势,土壤有机碳为文冠果林地荒草地沙棘林地柠条灌丛,且差异显著(P0.05)。荒草地0—40 cm范围内土壤MBC含量分别比文冠果林地、柠条灌丛、沙棘林地显著降低了8.61%、23.84%、41.42%(P0.05);荒草地土壤POC含量分别比文冠果林地、沙棘林地降低了14.47%、16.67%,比柠条灌丛POC高出了25.00%;但荒草地土壤EOC含量、碳库活度及碳库管理指数均显著高于其他3种植被类型(P0.05)。4中植被类型中沙棘林地土壤微生物熵(SME,Soil Microbial Entropy)最大,而柠条灌丛土壤有机碳储量最小。土壤SOC与土壤EOC、有机碳储量(SOCS,Soil Organic Carbon Storage)显著相关(P0.05),而土壤SOC与POC呈极显著的相关(P0.01);土壤EOC与土壤POC显著相关(P0.05),但土壤MBC与SOC、POC、EOC、SOCS均呈现出不同程度的负相关性。因此土壤活性有机碳能客观反映土壤肥力和土壤质量的变化情况,是描述土壤质量和评价土壤管理的重要指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号