首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.  相似文献   

2.
3-D-orientation with the octavolateralis system.   总被引:1,自引:0,他引:1  
Fish detect and localize a sound source with inner ear receptors and with the mechanosensory lateral line. The inner ear of fish is sensitive to the water displacements caused by sound waves through a direct, inertial response by hair cell epithelia of the ear. Hearing specialists, such as goldfish and herring, have accessory peripheral structures that provide additional sensitivity to the pressure component of a sound wave. While the inner ear of fish responds to the whole body motions caused by sound waves and--in case of hearing specialists--to sound pressure, the lateral line is only sensitive to water motions relative to the surface of the fish and to local pressure gradients. Using lateral line and/or acoustic input, some fish can determine the direction and the distance to a sound source. Most likely they do so by exploiting some of the mechanisms described in this paper. Piscivorous fish may use lateral line input to detect the wakes caused by swimming fish. Even in the absence of light catfish, for instance, can follow a 10 s old, three-dimensional wake left by a prey fish over distances up to 55 prey-body length.  相似文献   

3.
It has been postulated that the excellent sense of hearing in moose is mostly due to: (1) the large surface of the external ear, (2) better stereophony due to the large distance between ears, (3) independently movable, extremely adjustable pinna, and (4) the amplification of sounds reflected by the palms of the antlers. The last factor, possible reflection of sounds into pinna by the palm of the antlers, was tested in this study on a large antler trophy of Alaskan moose. The reception of a standard tone, broadcast from the frontally placed speaker, was recorded by a sound level meter located in an artificial moose ear. Three locations of the ear, as positioned relative to the speaker, e.g., frontward, sideward, and backward, were tested. The weakest reception was recorded in the backward position of the ear. If the sound pressure measured in the frontward position was set as 100%, the sound pressure in the backward position was 79%. The strongest reception was recorded when the artificial ear was positioned toward the center of the antler palm. In this position, the sound pressure was 119% relative to the frontward position. These findings strongly indicate that the palm of moose antlers may serve as an effective, parabolic reflector which increases the acoustic pressure of the incoming sound.  相似文献   

4.
The acoustic portions of the mammalian ear display greater morphologicaldiversity in peripheral than in central portions. In many mammalsthe pinna is of negligible auditory significance. The tympano-ossicularsystem of all mammals sensitive to air-borne sounds must transformair vibrations to fluid vibrations in the inner ear by matchingthe acoustical impedances. Within the cochlea the energy ofthe fluid vibrations is transduced into nerve impulses. In highly specialized mammals the morphology of these transformerand transducer mechanisms is adapted for the reception of extremefrequencies. Echolocating bats and whales possess different,but effective, specializations for the reception of ultrasonicfrequencies. Moles and kangaroo rats, on the other hand, havespecialized ear structures for the reception of low frequencies.  相似文献   

5.
V. A. Ryabov 《Biophysics》2014,59(3):475-483
Morphology of the dolphin’s lower jaw, model and behavioral experiments are discussed with the aim of exploring the mechanisms of sound reception and conduction to the lower jaw canals, taking into account the known concepts of acoustics and the theory of grouped antennas. It is shown that the left and right rows of mental foramens with the respective mandibular canal and tissues of the canals are forming the new external ear and the new external auditory duct whereby sound (in the frequency band of 0.1–160 kHz) is transmitted into the middle ear, in contrast to the dolphin’s nonfunctional outer ear. This new external ear is created by nature as a receiving array of traveling-wave antennas located in the throat of an acoustic horn (the respective mandibular canal). The results give reason to assume the existence of a similar new external ear in Odontoceti.  相似文献   

6.
Sounds and sound production in fishes   总被引:3,自引:0,他引:3  
The main information on the sounds and sound production in fishes is reviewed. The present systems of sound classification and specialized sound production in fishes with different taxonomic positions and ecology are described. The anatomy of sound generating organs is analyzed, and the mechanisms of production of different types of sounds (stridulation, drumming, cavitation, and percussion, as well as hydrodynamic, pneumatic, stringed, and respiratory sounds) are discussed. A brief characterization of the acoustic parameters of different sound types is given. Recent data on the anatomy and morphology of the sonic muscles (including their innervation, physiology, sexual dimorphism, and seasonal changes) are reviewed. The dynamics of the development of sound generating organs are described, and their capacity for sound production in the ontogeny of fishes is followed.  相似文献   

7.
《Biophysical journal》2020,118(2):464-475
Bush crickets have tympanal ears located in the forelegs. Their ears are elaborate, as they have outer-, middle-, and inner-ear components. The outer ear comprises an air-filled tube derived from the respiratory trachea, the acoustic trachea (AT), which transfers sound from the mesothoracic acoustic spiracle to the internal side of the ear drums in the legs. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces of the tympanum (the ear drum), producing differences in sound pressure and time between the left and right sides, therefore aiding the directional hearing of the animal. It has been demonstrated experimentally that the tracheal sound transmission generates a gain of ∼15 dB and a propagation velocity of 255 ms−1, an approximately 25% reduction from free-field propagation. However, the mechanism responsible for this change in sound pressure level and velocity remains elusive. In this study, we investigate the mechanical processes behind the sound pressure gain in the AT by numerically modeling the tracheal acoustic behavior using the finite-element method and real three-dimensional geometries of the tracheae of the bush cricket Copiphora gorgonensis. Taking into account the thermoviscous acoustic-shell interaction on the propagation of sound, we analyze the effects of the horn-shaped domain, material properties of the tracheal wall, and the thermal processes on the change in sound pressure level in the AT. Through the numerical results obtained, it is discerned that the tracheal geometry is the main factor contributing to the observed pressure gain.  相似文献   

8.
The directionality of the frog ear described by a mechanical model   总被引:2,自引:0,他引:2  
The frog ear can be modelled as two coupled eardrums with an additional sound pathway through the mouth cavity. In a previous version of this model, with realistic parameters, we were able to account very well for empirical measurements of the eardrum vibration under free- and closed-field acoustic conditions. This earlier model does not, however, adequately predict the directional characteristics of the frog ear as determined empirically. In this paper we present a modified model which will account for the directionality together with the free- and closed-field frequency responses, and which is also consistent with anatomical considerations.  相似文献   

9.
We investigated directionalities of eardrum vibration and auditory nerve response in anesthetized northern leopard frogs (Rana pipiens pipiens). Simultaneous measures of eardrum velocities and firing rates from 282 auditory nerve fibers were obtained in response to free-field sounds from eight directions in the horizontal plane. Sound pressure at the external surface of the ipsilateral eardrum was kept constant for each presentation direction (± 0.5 dB). Significant effects of sound direction on eardrum velocity were shown in 90% of the cases. Maximum or minimum eardrum velocity was observed more often when sounds were presented from the lateral and posterior fields, or from the anterior and contralateral fields, respectively. Firing rates of 38% of the fibers were significantly affected by sound direction and maximum or minimum firing rate was observed more frequently when sounds were delivered from the lateral fields, or from the anterior and contralateral fields, respectively. Directionality patterns of eardrum velocity and nerve firing also vary with sound frequency. Statistically significant correlation between eardrum velocity and nerve fiber firing rate was demonstrated in only 45% of the fibers, suggesting that sound transmission to the inner ear through extratympanic pathways plays a non-trivial role in the genesis of directionality of auditory nerve responses.Abbreviations CF characteristic frequency - SVL snout-vent length - TM tympanic membrane  相似文献   

10.
The vestibulo-ocular reflex is the system of compensatory ocular movements in response to stimulation of the kinetic labyrinth seen in all vertebrates. It allows maintenance of a stable gaze even when the head is moving. Perhaps the simplest influence on the VOR is the spatial orientation of the planes of the semicircular canals relative to the extraocular muscles. It is hypothesized that the extraocular muscles are in parallel alignment with their corresponding semicircular canals in order to reduce the amount of neural processing needed and hence keep reflex times to a minimum. However, despite its obvious importance, little is known of this spatial arrangement. Moreover, nothing is known about any ontogenetic changes in the relative orientations of the extraocular muscles and semicircular canals. The morphologies of fetal and adult specimens of Homo sapiens were examined using magnetic resonance (MR) images. Three-dimensional co-ordinate data were taken from the images and used to calculate vector equations of the extraocular muscles and planes of best fit for the semicircular canals. The relative orientations of the muscles and canals were then calculated from the vectors and planes. It was shown that there are significant correlations between both the anterior and lateral semicircular canals and their corresponding extraocular muscles during ontogeny. In the case of the lateral canal with the medial rectus, the lateral canal with the lateral rectus, and the anterior canal with the inferior oblique, the trend is towards, though never reaching, alignment, whereas the anterior canal and the superior rectus muscle move out of alignment as age increases. Furthermore, it was noted that none of the six muscle-canal pairs is in perfect alignment, either during ontogeny or in adulthood. It was also shown that the three semicircular canals are not precisely orthogonal, but that the anterior and posterior canals form an angle of about 85 degrees , while the anterior and lateral canals diverge by approximately 100 degrees . Overall, it was shown that there is significant reorientation of the extraocular muscles and semicircular canals during ontogeny, but that, in most cases, there is little realignment beyond the fetal period.  相似文献   

11.
The ontogeny of the ear, swim bladder and laterophysic connection was investigated in the spotfin butterflyfish, Chaetodon ocellatus in order to determine how the development of the laterophysic connection (a Chaetodon synapomorphy) is correlated with ontogenetic changes in the hearing capabilities in these abundant and ecologically important coral reef fishes. Histological and cleared and stained material revealed that the medial opening in the lateral line canal in the supracleithrum (which defines the laterophysic connection), an inflated physoclistous swim bladder, and the three otolithic organs are already present in the smallest individuals examined (7?C15?mm SL). The medial opening in the supracleithrum increases in size and the cylindrical swim bladder horns form after the loss of the head plates characteristic of the tholichthys stage, in individuals ??29?mm SL. The three sensory maculae of the ear increase in size, and the shape of the sacculus changes most dramatically with fish growth; hair cell density is highest in the utriculus. Physiological analysis of the reponse to sound pressure showed that larval and juvenile C. ocellatus had a hearing sensitivity peak at 100?C200?Hz, which was ~30?C40?dB more sensitive than that measured in larval coral reef fishes (e.g., damselfishes) that lack swim bladder horns. C. ocellatus did not show any ontogenetic changes in sensitivity to sound pressure, which may be explained by the fact that the growth of the swim bladder horns maintains the small distance between the swim bladder and ear that was established earlier during the larval stage. The timing of the development of the swim bladder horns suggests that if the laterophysic connection has a sensory acoustic function, its presence in individuals >29?mm SL suggests that its role is limited to post-settlement, reef-based behaviors.  相似文献   

12.
The mechanisms of hearing in the fire-bellied toad Bombina orientalis, an “earless” species of amphibian that lacks a standard tympanic middle ear, were studied using laser Doppler vibrometric and neurophysiological techniques. Laser vibrometry demonstrated that the anterolateral body wall overlying the lung is much more responsive to sound than the lateral head surface overlying the inner ear. Covering the lateral body wall with silicone grease dramatically decreased auditory midbrain sensitivity at all frequencies examined, elevating thresholds by 20–25 dB. Filling the lungs with oxygenated saline produced similar decrements in hearing sensitivity, and both manipulations strongly suggest that the lung is the primary route of sound reception in this species. The precise route of transfer of sound energy from the body wall and lungs to the inner ear remains unclear. The lung-based hearing system of “earless” fire-bellied toads may represent the retention of the first auditory mechanism used by early tetrapod vertebrates for detection of airborne sound. Accepted: 10 December 1998  相似文献   

13.
Odontocete mandibles serve multiple functions, including feeding and hearing. We consider that these two major functions have their primary influence in different parts of the mandibles: the anterior feeding component and the posterior sound reception component, though these divisions are not mutually exclusive. One hypothesis is that sound enters the hearing apparatus via the pan bone of the posterior mandibles (Norris, Evolution and Environment, 1968 , pp 297–324). Another viewpoint, based on finite element models, suggests that sound enters primarily through the gular region and the opening created by the absent medial lamina of the posterior mandibles. This unambiguous link between form and function has catalyzed this study, which uses Geometric Morphometrics to quantify mandibular shape across all major lineages of Odontoceti. The majority of shape variation was found in the anterior (feeding) region: Jaw Flare (45.0%) and Symphysis Elongation (35.5%). Shape differences in the mandibular foramen, within the posterior (sound reception) region, also accounted for a small portion of the total variation (10.9%). The mandibles are an integral component of the sound reception apparatus in toothed whales and the geometry of the mandibular foramen likely plays a role in hearing. Furthermore, model goodness‐of‐fit tests indicate that mandibular foramina shapes, which appear conserved, evolved under a selective regime, possibly driven by sound reception requirements across Odontoceti. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Amphibians, specially anurans, are excellent model systems for studying acoustic communication. After hatching, anurans exist in two forms; these have two distinct mode of sound perception. Aquatic larvae are perceptive to waterborne sound stimuli; then, following metamorphosis, as terrestrial adults, perceptive to airborne sound stimuli. Added to this, the metamorphosing tadpole presents an equally interesting study as it could recapitulate the events which occurred during the evolution of hearing in vertebrates at the lime of the transition from aquatic to terrestrial life. Metamorphosis entails the loss of a prominent aquatic sensory system—the lateral line system—and the simultaneous gain of another, the inner ear, along with the coevolution of the tympanic middle ear, a basilar papilla and a periotic labyrinth in the inner ear. Another interesting feature is that anurans are believed to be the first terrestrial vertebrates to use vocalization as a part of their reproductive behaviour. Vocal communication plays an important role in behaviour, ranging from territorial defense to reproduction, and calls are classified according to the particular behaviors that they subserve. Adult male anurans produce a species-specific mating call which is used to attract conspecific females dung their mating season, and this call serves as a mechanism in maintaining reproductive isolation from other sympatric species.  相似文献   

15.
A laser Doppler vibrometer was used to measure the acoustic responses of different body surfaces of several species of salamanders and lizards. The lateral body wall over the lung displayed sound-induced motion up to 30 dB greater than the lateral head surface from 300-1,000 Hz in salamanders and from 200-2,500 Hz in lizards. The lateral body wall of lungless plethodontid salamanders showed no such enhanced motion to sound. The lateral body wall of lizards was more responsive than their tympanum to sound frequencies below about 1,250-2,000 Hz. The frequency of the peak response of lizard body walls matched the resonant frequency of a Helmholtz resonator with the volume and dimensions of their lungs. In contrast, the frequency of peak response of salamander body walls was well below the resonant frequencies calculated for both Helmholtz resonators and closed tubes with the dimensions and volumes of their lungs. Nonetheless, filling the lungs with saline dramatically reduced the responsiveness of the lateral body walls of both the lunged salamanders and the lizards. As previously demonstrated in anuran amphibians, the lateral body wall and lungs of salamanders and lizards may function in sound reception, especially at relatively low frequencies.  相似文献   

16.
We measured the velocity and attenuation of audible sound in the isolated lung of the near-term fetal sheep to test the hypothesis that the acoustic properties of the lung provide a measure of the volume of gas it contains. We introduced pseudorandom noise (bandwidth 70 Hz-7 kHz) to one side of the lung and recorded the noise transmitted to the surface immediately opposite, starting with the lung containing only fetal lung liquid and making measurements after stepwise inflation with air until a leak developed. The velocity of sound in the lung fell rapidly from 187 +/- 28.2 to 87 +/- 3.7 m/s as lung density fell from 0.93 +/- 0.01 to 0.75 +/- 0.01 g/ml (lung density = lung weight/gas volume plus lung tissue volume). For technical reasons, no estimate of velocity could be made before the first air injection. Thereafter, as lung density fell to 0.35 +/- 0.01 g/ml, there was a further decline in velocity to 69.6 +/- 4.6 m/s. High-frequency sound was attenuated as lung density decreased from 1.0 to 0.5 g/ml, with little change thereafter down to a density of 0.35 +/- 0.01 g/ml. We conclude that both the velocity of audible sound through the lung and the degree to which high-frequency sound is attenuated in the lung provide information on the degree of inflation of the isolated fetal lung, particularly at high lung densities. If studies of sound transmission through the lung in the intact organism were to confirm these findings, the acoustic properties of the lung could provide a means for monitoring lung aeration during mechanical ventilation of newborn infants.  相似文献   

17.
Structure and Function of the Elasmobranch Auditory System   总被引:1,自引:0,他引:1  
Behavioral evidence indicates that sharks detect underwatersound at frequencies up to 1000 Hz, and that certain low frequencysignals attract sharks from large distances. It appears thatthe adequate stimulus for "sound detecting" systems of the sharkis panicle motion, as opposed to fluctuations in sound pressure.The elasmobranch ear consists of the three semi-circular canalsfor detecting angular accelerations, and otolith organs fordetecting linear motion and accelerations due to gravity. Twoof these organs, the sacculus and macula neglecta, have beenshown to be responsive to vibratory motion, with the maculaneglecta having best sensitivity to vertical movements. A directvibrational pathway exists to the macula neglecta from the parietalfossa of the dorsal chondrocranium. It is not clear at present,however, whether it is the inner ear or the lateral line systemwhich is responsible for hearing. Both detection systems aretheoretically capable of providing information to the brainabout sound source location using non-parallel arrays of directionallysensitive hair-cell receptors. Recent theories of underwatersound localization by fishes and sharks suggest that the abilityto detect a vertical displacement component of an acoustic signal(e. g., via the macula neglecta) is necessary for instantaneouslocation decisions. It is not known, however, whether the sharkslocalize by processing information about various aspects ofthe sound field simultaneously (in parallel), or whether thesound field is sampled successively at different points in space.Clearly, more experimental work on the physiology of elasmobranchacoustic behavior is called for.  相似文献   

18.
While acoustic communication has been described in adults of various fish species, our knowledge about the ontogeny of fish sound production is limited. In adults, sound signals are known to be involved during aggressive interactions. However, aggressive behaviour may appear early in the life of fishes due to the possible competition for food and space. If acoustic signals are used to send information to competitors, sounds are likely to play a role during interactions between juvenile fish as well. The apparition and evolution of sound production were monitored in a group of juveniles of the cichlid fish Metriaclima zebra from hatching to 4months of age. In addition, the link between vocalizations and agonistic behaviour was studied during dyadic interactions at three different ages. Sounds production appeared to be present early in the development of this fish and increased along with the number of aggressive behaviours. Recorded sounds consisted, in juveniles, in isolated pulses showing a decrease in frequency and duration as the fish grew. In adults, sounds became bursts of pulses but the transition from isolated to repetitive pulses was not observed. These results are compared to the existing literature on sound production ontogeny in fishes.  相似文献   

19.
The mastoid auditory bulla of the extinct marsupial sabertooth, Thylacosmilus, has an enlarged, complex hypotympanic sinus but lacks an alisphenoid contribution. These are marked departures from the usual marsupial condition. Details of the ear region of Thylacosmilus are compared with those of the convergent, extinct placental sabertooth, Smilodon, and each is compared with less specialized related forms to define differences and similarities of the evolutionary paths that led to the striking overall convergence. Functional factors such as pressure transformer ratio (PTR), impedance transformer ratio (ITR), acoustic impedence at the eardrum, and the fraction of the sound energy theoretically transmitted to the inner ear cannot be estimated for Thylacosmilus because certain critical measures are still unknown (tympanum size, ossicle lever arm ratios). However, in both sabertooths enlarged complex hypotympanic sinuses, characterized by expansions and contractions, are greatly developed. They vastly increase middle ear space (volume) and must have influenced these factors. In both, the sinuses provide the large air volume needed to prevent excessive damping of sound energy transmission (Hunt and Korth, '80), and both are believed to have achieved a further modulation of the system from the cushioning or “pillow” effect of the confined air as it directly damps the tympanum itself. Thylacosmilus has still another feature that may have given greater control over damping of sound energy transmission: the direct opening (probably membrane covered) of one of the sinus cavities into the side of the meatal tube. In this feature, as in others noted earlier (Turnbull, '76, '78), we see a greater degree of specialization in this marsupial sabertooth than in a placental counterpart.  相似文献   

20.
Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa—a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号