首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of an acute intravenous infusion of ammonium acetate on rat cerebral glutamate and glutamine concentrations, energy metabolism, and intracellular pH were measured in vivo with 1H and 31P nuclear magnetic resonance (NMR). The level of blood ammonia maintained by the infusion protocol used in this study (approximately 500 microM, arterial blood) did not cause significant changes in arterial PCO2, PO2, or pH. Cerebral glutamate levels fell to at least 80% of the preinfusion value, whereas glutamine concentrations increased 170% relative to the preinfusion controls. The fall in brain glutamate concentrations followed a time course similar to that of the rise of brain glutamine. There were no detectable changes in the content of phosphocreatine (PCr) or nucleoside triphosphates (NTP), within the brain regions contributing to the sensitive volume of the surface coil, during the ammonia infusion. Intracellular pH, estimated from the chemical shift of the inorganic phosphate resonance relative to the resonance of PCr in the 31P spectrum, was also unchanged during the period of hyperammonemia. 1H spectra, specifically edited to allow quantitation of the brain lactate content, indicated that lactate rose steadily during the ammonia infusion. Detectable increases in brain lactate levels were observed approximately 10 min after the start of the ammonia infusion and by 50 min of infusion had more than doubled. Spectra acquired from rats that received a control infusion of sodium acetate were not different from the spectra acquired prior to the infusion of either ammonium or sodium acetate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The nucleoside guanosine (GUO) increases glutamate uptake by astrocytes and acts as antioxidant, thereby providing neuroprotection against glutamatergic excitotoxicity, as we have recently demonstrated in an animal model of chronic hepatic encephalopathy. Here, we investigated the neuroprotective effect of GUO in an acute ammonia intoxication model. Adult male Wistar rats received an intraperitoneal (i.p.) injection of vehicle or GUO 60 mg/kg, followed 20 min later by an i.p. injection of vehicle or 550 mg/kg of ammonium acetate. Afterwards, animals were observed for 45 min, being evaluated as normal, coma (i.e., absence of corneal reflex), or death status. In a second cohort of rats, video-electroencephalogram (EEG) recordings were performed. In a third cohort of rats, the following were measured: (i) plasma levels of glucose, transaminases, and urea; (ii) cerebrospinal fluid (CSF) levels of ammonia, glutamine, glutamate, and alanine; (iii) glutamate uptake in brain slices; and (iv) brain redox status and glutamine synthetase activity in cerebral cortex. GUO drastically reduced the lethality rate and the duration of coma. Animals treated with GUO had improved EEG traces, decreased CSF levels of glutamate and alanine, lowered oxidative stress in the cerebral cortex, and increased glutamate uptake by astrocytes in brain slices compared with animals that received vehicle prior to ammonium acetate administration. This study provides new evidence on mechanisms of guanine-derived purines in their potential modulation of glutamatergic system, contributing to GUO neuroprotective effects in a rodent model of by acute ammonia intoxication.  相似文献   

3.
l-Carnitine when injected in mice 30 min before an LD100 of ammonium acetate (12 mmol/kg body weight, intraperitoneal) reduced mortality (100% survival with 16 mmoll-carnitine/kg) and prevented the appearance of symptoms of ammonia toxicity. Brain ammonia decreased in the animals givenl-carnitine. Ammonia decreased the levels of glutamate in brain; they were partially restored byl-carnitine, which also reduced the increase in brain glutamine in animals given only ammonia. The redox state of the brain was altered following ammonia intoxication. The ratio of lactate to pyruvate in the cytosol increased while that of glutamate to -ketoglutarate in the mitochondria decreased. These ratios were partially restored byl-carnitine. The implications of these findings are discussed relative to the mechanism of ammonia toxicity.  相似文献   

4.
Neurochemical consequences of repeated ethanol treatment on energy and ammonia metabolism were studied in different regions of rat brain. Energy production was decreased as indicated by lowered lactate dehydrogenase and succinate dehydrogenase activities with possible lacticacidimia. Transamination of alanine and aspartate increased while the deamination of glutamate decreased in all the regions of brain. The deamination of AMP was slightly elevated in cerebral cortex and brain stem while it was inhibited in cerebellum. Ammonia levels were persistently high, despite stepped up glutamine synthesis and ureogenesis. The synergistic action of ammonia during ethanol intoxication is envisaged.  相似文献   

5.
Pregnant rats of 19th and 21st days were given an acute nitrogen overload produced by an infusion of either 0.2 M ammonium acetate or 0.2 M glutamine. Metabolic adaptations to nitrogen excess were studied measuring--in fetomaternal unit--non-protein nitrogen content and the activities of enzymes related with ammonia metabolism. Maternal and fetal plasma urea levels were increased by ammonium acetate treatment. Glutamine overload increased more the amino acid content in the mothers than in conceptus. As response to ammonium acetate treatment, glutamate dehydrogenase activity in liver was more sensitive in pregnant than in nonpregnant rats, suggesting more nitrogen incorporation into amino acids in pregnancy. Regarding glutamine synthetase activity, both treatments had an opposite effect except in kidney. The adenylate deaminase activity of pregnant rats was inhibited similarly to nonpregnant rats by nitrogen overloads, but stronger after glutamine infusion. Placenta and fetal metabolism were adjusted, as the dams, to lack of ammonia production by nitrogen overloads and to glutamine synthesis by ammonium acetate infusion.  相似文献   

6.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

7.
1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the release of 14CO2 from L-[1-14C]glutamate (which gives an estimation of the flux of glutamate carbon skeleton through alpha-oxoglutarate dehydrogenase) clearly indicated that, despite the absence of ammonia accumulation, glutamate metabolism was initiated by the action of glutamate dehydrogenase and not by transamination reactions as suggested by Klahr, Schoolwerth & Bourgoignie [(1972) Am. J. Physiol. 222, 813-820] and Preuss [(1972) Am. J. Physiol. 222, 1395-1397]. Additional evidence for this was obtained by the use of (i) amino-oxyacetate, an inhibitor of transaminases, which did not decrease glutamate removal, or (ii) L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which caused an accumulation of ammonia from glutamate. 5. Addition of NH4Cl plus glutamate caused an increase in both glutamate removal and glutamine synthesis, demonstrating that the supply of ammonia via glutamate dehydrogenase is the rate-limiting step in glutamine formation from glutamate. NH4Cl also inhibited the flux of glutamate through glutamate dehydrogenase and the formation of glucose, alanine and lactate. 6. The activities of enzymes possibly involved in the glutamate conversion into pyruvate were measured in guinea-pig renal cortex. 7. Renal arteriovenous-difference measurements revealed that in vivo the guinea-pig kidney adds glutamine and alanine to the circulating blood.  相似文献   

8.
Portocaval anastomosis (PCA) in the rat leads, within 4 weeks, to severe liver atrophy, sustained hyperammonemia, and increased brain ammonia. Because brain is not equipped with an effective urea cycle, removal of ammonia involves glutamine synthesis and PCA results in significantly increased brain glutamine. Glutamine synthetase activities, however, are decreased by 15% in cerebral cortex and are unchanged in brainstem of shunted rats. Administration of ammonium acetate to rats following PCA results in severe encephalopathy (loss of righting reflex and, ultimately, coma). Glutamine concentrations in brainstem of comatose rats are increased a further two-fold, whereas those of cerebral cortex are unchanged. Consequently, ammonia levels in cerebral cortex reach disproportionately high levels (of the order of 5 mM). These findings suggest a limitation in the capacity of cerebral cortex to remove additional blood-borne ammonia by glutamine formation following PCA. Such mechanisms may explain the hypersensitivity of rats with PCA and of patients with portal-systemic shunting to small increases of blood ammonia. Disproportionately high levels of brain ammonia in certain regions, such as cerebral cortex, may then result in alterations of inhibitory neurotransmission and, ultimately, loss of cellular (astrocytic) integrity.  相似文献   

9.
Abstract: Enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis, and glutamine release into the bloodstream have been hypothesized to deplete cerebral cortex glutamate pools. We investigated this hypothesis in rats with chronic liver insufficiency-induced hyperammonemia and in pair-fed controls to rule out effects of differences in food intake. Cerebral cortex plasma flow and venous-arterial concentration differences of ammonia and amino acids, as well as cerebral cortex tissue concentrations, were studied 7 and 14 days after surgery in portacaval-shunted/bile duct-ligated, portacaval-shunted, and sham-operated rats, while the latter two were pair-fed to the first group, and in normal unoperated ad libitum-fed control rats. At both time points, arterial ammonia was elevated in the chronic liver insufficiency groups and arterial glutamine was elevated in portacaval shunt/biliary obstruction rats compared to the other groups. In the chronic liver insufficiency groups net cerebral cortex ammonia uptake was observed at both time points and was accompanied by net glutamine release. Also in these groups, cerebral cortex tissue glutamine, many other amino acid, and ammonia levels were elevated. Tissue glutamate levels were decreased to a similar level in all operated groups compared with normal unoperated rats, irrespective of plasma and tissue ammonia and glutamine levels. These results demonstrate that during chronic liver insufficiency-induced hyperammonemia, the rat cerebral cortex enhances net ammonia uptake and glutamine release. However, the decrease in tissue glutamate concentrations in these chronic liver insufficiency models seems to be related primarily to nutritional status and/or surgical trauma.  相似文献   

10.
We studied the effects of sodium valproate, a widely used antiepileptic drug and a hyperammonemic agent, on L-[1-14C]glutamine and L-[1-14C]glutamate metabolism in isolated human kidney-cortex tubules. Valproate markedly stimulated glutamine removal as well as the formation of ammonia, 14CO2, pyruvate, lactate and alanine, but it inhibited glucose synthesis; the increase in ammonia formation was explained by a stimulation by valproate mainly of flux through glutaminase (EC 3.5.1.2) and to a much lesser extent of flux through glutamate dehydrogenase (EC 1.4.1.3). By contrast, valproate did not stimulate glutamate removal or ammonia formation, suggesting that the increase in flux through glutamate dehydrogenase observed with glutamine as substrate was secondary to the increase in flux through glutaminase. Accumulation of pyruvate, alanine and lactate in the presence of valproate was less from glutamate than from glutamine. Inhibition by aminooxyacetate of accumulation of alanine from glutamine caused by valproate did not prevent the acceleration of glutamine utilization and the subsequent stimulation of ammonia formation. It is concluded from these data, which are the first concerning the in vitro metabolism of glutamine and glutamate in human kidney-cortex tubules, that the stimulatory effect of valproate is primarily exerted at the level of glutaminase in human renal cortex.  相似文献   

11.
Sustained hyperammonemia resulting from portocaval anastomosis (PCA) in the rat, is accompanied by neurological symptoms and reversible morphological changes in brain, the nature and distribution of which suggest selective vulnerability of certain brain structures. the present study was initiated to investigate the effects of increasing CNS ammonia on the distribution of amino acids in regions of the rat brain in relation to the degree of neurological impairment in PCA rats. Four weeks following PCA, rats were administered ammonium acetate (5.2 mmol/kg, i.p.) to precipitate neurological symptoms of encephalopathy which included diminished locomotor activity, loss of hindlimb extension and righting reflexes and ultimately coma. At various stages during the development of encephalopathy, rats were sacrificed and the amino acids glutamine, glutamate and aspartate measured simultaneously, using a sensitive double-isotope dansyl microassay. Homogenates of the following regions of the CNS were assayed: cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla-pons, spinal cord (gray matter) and spinal cord (white matter). Sustained hyperammonemia associated with PCA alone resulted in a non-uniform 2–4 fold increase of glutamine in all regions of the CNS. Glutamate, on the other hand, was selectively increased in striatum and cerebellum, two regions of brain shown to exhibit early morphologically-characterised astrocytic abnormalities in rats with PCA. Onset of severe neurological dysfunction was accompanied by significantly decreased glutamine and glutamate in striatum and cerebellum. Thus, sustained hyperammonemia in association with portocaval shunting results in region-selective effects with respect to glutamine-glutamate metabolism in the CNS.  相似文献   

12.
In vivo studies were performed in the dog to verify if sodium lactate had an important effect on the metabolism of glutamine by the kidney. The animals were infused with 0.6 M sodium lactate to induce acute metabolic alkalosis with plasma bicarbonate of 29.7 mM. During these experiments, it was demonstrated that the renal uptake of glutamine increased by 46%, while the renal production of ammonia was unchanged. The renal production of alanine rose from 6.0 to 16.8 mumol/min. Plasma concentration of lactate increased from 1.3 to 19.2 mM, while that of pyruvate increased from 0.075 to 0.454 mM. In the renal tissue, alpha-ketoglutarate, malate, oxaloacetate, lactate, pyruvate, citrate, and alanine increased significantly. Similar changes were found in the liver and skeletal muscle. The observed changes are best described by transamination of pyruvate and glutamate under the influence of alanine aminotransferase (GPT). It can be calculated that this reaction was responsible for 76% of the production of ammonia from glutamine, the latter being necessary to provide glutamate for the synthesis of alanine. Dogs infused with 0.3 M sodium bicarbonate instead of sodium lactate with the same degree of acute metabolic alkalosis, showed a depression of 40% in the renal uptake of glutamine with a 38% decrease in renal ammoniagenesis and a 20% fall in the production of alanine. The present studies demonstrate that the production of ammonia from glutamine is not necessarily related to changes in acid-base balance, but may be associated with biochemical alterations related to the synthesis of alanine by the kidney.  相似文献   

13.
The infusion of ether anesthaetized rats with 0.2 M (1 mmols in total) ammonium acetate or glutamine were compared with the infusion of 0.2 M NaCl. The levels of circulating glucose, amino acids, lactate, urea and ammonium were measured as well as liver glycogen and tissue amino acids and the liver and muscle activities of carbamoyl phosphate synthetases I and II, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase. Neither treatment altered the glucose and glycogen homeostasis. The infusion of ammonium did not result in increases in circulating ammonium, but resulted in increased circulating urea after a short delay; the infusion of glutamine resulted also in urea production but much later on. Glutamine infusion also resulted in increased tissue free amino-acid levels. There was little alteration in enzyme activities, except for decreased glutamine synthetase and adenylate deaminase activity in muscle of glutamine-infused rats and higher tissue carbamoyl phosphate synthetase II. The results agree with a fast removal of infused ammonium, and maintenance of glutamine, with their channeling towards urea production at a rate comparable with that of infusion, that did not alter significantly the homeostasis of the experimental animals.  相似文献   

14.
Unilateral frontal cortex ablations were performed in rats so that the glutamate terminals in the ipsilateral rostral neostriatum were removed. At 1 or 7 days later, intraperitoneal injections of ammonium acetate induced different changes in amino acid concentrations in the intact and deafferentated neostriatum. After 1 day, the level of glutamate decreased only in the intact side, whereas that of glutamine increased and that of aspartate decreased to the same extent on both sides following ammonia injection. After 7 days, the glutamate level decreased more in the intact than the decorticated side in both nonconvulsing and convulsing rats. The concentration of alanine increased most in the intact neostriatum, whereas glutamine levels increased and aspartate levels decreased to the same extent on both sides in nonconvulsing and convulsing rats. The results indicate that ammonia has a more pronounced effect on neuronal than glial glutamate pools.  相似文献   

15.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

16.
Ammonia exerts a multitude of metabolic and non-metabolic effects on brain tissue. In the present communication we have investigated its effect on lactate production rates, pyruvate production rates and pyruvate/lactate ratios in mouse cerebrocortical astrocytes and neurons in primary cultures. No effects were found in neurons. All three parameters were affected by ammonia in astrocytes, but less potently and to a smaller degree in cells that had been treated with dibutyryl cyclic AMP (morphologically differentiated cells) than in untreated cells (morphologically undifferentiated cells). In the differentiated cells ammonia had virtually no effect up to a concentration of 1.0 mM, but at 3.0 mM it increased lactate production and decreased pyruvate/lactate ratio significantly. In the undifferentiated cells ammonia greatly increased lactate accumulation (by 80% at 3.0 mM) and it inhibited pyruvate accumulation (by 40% at 3.0 mM). It thereby reduced the pyruvate/lactate ratio progressively within the entire range 0.1-3.0 mM ammonia. In support of the hypothesis that the ammonia-induced reduction of pyruvate/lactate ratio is secondary to depletion of cellular glutamate by formation of glutamine (and glutathione) and a resulting interruption of the malate-aspartate shuttle (MAS), the addition of glutamate to the incubation medium significantly diminished the ammonia-induced reduction of pyruvate/lactate ratio, whereas it had no effect on the increased lactate production. It is discussed that MAS interruption may have additional consequences in astrocytes.  相似文献   

17.
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.  相似文献   

18.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

19.
We have proposed that acute ammonia toxicity is mediated by activation of the N-methyl-D-aspartate type of glutamate receptors. MK-801, a selective antagonist of these receptors, prevents death of animals induced by acute ammonia intoxication as well as ammonia-induced depletion of ATP. It seems therefore that, following activation of the N-methyl-D-aspartate receptors, the subsequent events in ammonia toxicity should be similar to those involved in glutamate neurotoxicity. As it has been shown that inhibitors of nitric oxide synthetase such as nitroargnine prevent glutamate toxicity, we have tested whether nitroarginine prevents ammonia toxicity and ammonia-induced alterations in brain energy and ammonia metabolites. It is shown that nitroarginine prevents partially (50%), but significantly death of mice induced by acute ammonia intoxication. Nitroarginine also prevents partially ammonia-induced depletion of brain ATP. It also prevents completely the rise in glucose and pyruvate and partially that in lactate. Injection of nitroarginine alone, in the absence of ammonia, induces a remarkable accumulation of glutamine and a decrease in glutamate. The results reported indicate that nitroarginine attenuates acute ammonia toxicity and ammonia-induced alterations in brain energy metabolites. The effects of MK-801 and of nitroarginine are different, suggesting that ammonia can induce nitric oxide synthetase by mechanisms other than activation of N-methyl-D-aspartate receptors.  相似文献   

20.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号