首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Callus cultures were established from seedling explants of Pergularia daemia (Forsk) Chiov on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins. Optimal callus developed from leaf explants on MS medium supplemented with 2,4-D (2 mg l?1) + 2iP (0.1 mg l?1), was used for morphogenesis. Adventitious shoots were regenerated (70%) from the calli on MS medium supplemented with NAA (0.1 mg l?1)+ BAP (2 mg l?1). Individual shoots were rooted on half strength MS medium supplemented with 0.1 mg l?1 IBA. Plantlets with well developed roots were successfully transferred to soil and 50% of the transferred plants survived.  相似文献   

2.
An efficient somatic embryogenesis and regeneration system was developed for the first time in onion using shoot apex explants. These explants were used to initiate callus in Murashige and Skoog (MS) medium supplemented with 4.0 mg l?1 2,4-dichlorophenoxyacetic acid. The induction frequency of primary callus in this medium was 85.3%. The primary calli were then transferred onto medium supplemented with 2.0 mg l?1 2,4-dichlorophenoxyacetic acid. Following two biweekly subcultures, embryogenic callus formed. Inclusion of a low concentration of 6-benzylaminopurine in the subculture medium promoted the formation of embryogenic callus. The addition of 2.0 mg l?1 glycine, 690 mg l?1 proline, and 1.0 g l?1 casein hydrolysate also increased the frequency of callus induction and embryogenic callus formation. The highest frequency of embryogenic callus (86.9%) and greatest number of somatic embryos (26.3 per callus) were obtained by the further addition of 8.0 mg l?1 silver nitrate. Somatic embryos formed plantlets on regeneration medium supplemented with 1.5 mg l?1 6-benzylaminopurine; addition of 2.0 mg l?1 glycine to the regeneration medium promoted a high frequency of regeneration (78.1%) and plantlet formation (28.7 plants per callus). The regenerated plantlets were transferred to half-strength MS medium supplemented with 1.5 mg l?1 indole-3-butyric acid for root development; the maximum frequency of root formation was 87.7% and the average number of roots was 7.6 per shoot. The regenerated plantlets were successfully grown to maturity after hardening in the soil. This is the first report of somatic embryogenesis and regeneration from shoot apex explants of onion.  相似文献   

3.
Callus cultures of Tabernaemontana persicariaefolia, (Apocynaceae), an endangered species endemic to the Mascarene Islands, were established from leaf explants on MS medium containing either 5 mg·l−1 2,4-D and 0.5 mg·l−1 BA or 5 mg·l−1 2,4-D, 0.5 mg·l−1 BA and 200 mg·l−1 DFMO. Histological studies showed regenerating nodules resembling globular embryos in calli after 4 weeks on the DFMO medium. Green shoot formation was achieved by sequential subculture of the induced calli on media with gradually decreasing 2,4-D concentrations (5→1→0 mg·l−1). Regeneration was greatly stimulated in the presence of DFMO. The first emergence of shoots occured 3 weeks earlier than in untreated callus cultures.  相似文献   

4.
Regeneration of adventitious shoots from leaf and petiole pieces of Gerbera jamesonii has been obtained on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins and cytokinins. About 75’77 per cent of the calli from both types of the explants produced 12’15 shoots per callus with 3 mg l?1 SAP. Auxins and kinetin, separately failed to produce shoots. The shoots regenerated on the callus induction medium (elM). The regenerated shoots multiplied with 1 mg l?1 SAP, were rooted on MS medium containing 1mg l-1 BAP + 0.1 mg l-1 IAA. The plants obtained were transferred to pots and acclimatized with 60’70 per cent success.  相似文献   

5.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

6.
Induction of callus and plant regeneration in Vicoa indica   总被引:1,自引:0,他引:1  
Callus cultures were initiated from the stem and leaf explants of aseptically grown Vicoa indica. A simple method is described for plant regeneration from callus and the rapid multiplication of the plants thus obtained. Callus initiation was optimum in Gamborg B5 (B5) basal medium containing either 2.0 mg l-1 naphthaleneacetic acid (NAA) with 0.2 mg l-1 kinetin (Kn) or 2.0 mg l-1 6-benzylaminopurine (BAP) with 0.2 mg l-1 NAA. The calli initiated on B5 medium were able to proliferate on both Murashige and Skoog (MS) and B5 basal medium. Shoot primordia were obtained from greenish callus on passage to B5 basal medium containing 3.0 mg l-1 BAP and 1.0 mg l-1 Kn. On further subculture onto B5 medium containing 0.2 mg l-1 Kn the shoot primordia developed into plantlets.  相似文献   

7.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

8.
An efficient callus proliferation system for Rheum franzenbachii Munt., a rare medicinal plant, has been developed. Callus induced from leaf explants incubated on Murashige and Skoog (MS) medium with appropriate supplements of plant growth regulators. In the 6-benzylaminopurine (6-BAP) in combination with α-naphthalene acetic acid (NAA) treatments, different concentrations of NAA showed different induction effects on explants. When concentration of 6-BAP was as high as 2.0 mgl?1 in combination with 0.5 mgl?1 NAA, the callus induction rate reached 58.3%. N-phenyl-N’-1,2,3-thiadiazol-5-ylure (TDZ) in combination with NAA was very suitable for callus proliferation compared to TDZ in combination with 2,4-dicholorophenoxy acetic acid (2,4-D) or TDZ in combination with indole-3-acetic acid (IAA). Fresh and dry weight of callus cultured on MS medium supplemented with 0.5 mgl?1 TDZ in combination with 0.2 mgl?1 NAA increased 26.3 and 15.0 times within 35 days culture, respectively. Quantitative analysis of rhaponticin by HPLC showed that the phytochemical profile of callus was similar to that of wild plants, and the content of rhaponticin in callus cultured on MS medium supplemented with 0.5 mgl?1 TDZ and 0.2 mgl?1 NAA was 16.6 mgg?1DW compared to that of 4.0 mgg?1 DW in wild plants.  相似文献   

9.
Callus cultures were established in three commercial sugarcane varieties viz., CoJ 64, CoJ 83 and CoJ 86 from spindle explants on MS + 2,4-D (4 mg l?1) + BAP (0.5 mg l?1) medium. Shoots were regenerated from two-month-old calli on MS + BAP (0.5 mg l?1) medium. Callus and callus derived shoots were treated with gamma (γ) radiation at 20, 40, 60 and 80 Gray (Gy). Per cent shoot regeneration from y-irradiated calli in the three varieties ranged from 90 to 93.8 at 20 Gy, 83.3 to 87.5 at 40 Gy, 30 to 36.4 at 60 Gy and 0 at 80 Gy. Upon irradiating shoots, subsequent shoot proliferation in the three varieties ranged from 90.9 to 93.1% at 20 Gy, 82.6 to 84.0% at 40 Gy and 27 to 32.3% at 60 Gy, whereas 80 Gy dose was 100% lethal. Thus, 60 Gy dose of y-radiation was found to be optimum for carrying out mutagenesis of both callus and callus derived shoots. In the field, different irradiated clones of the same variety exhibited huge variability with respect to number of canes, cane girth, cane height and sucrose content.  相似文献   

10.
Anti-inflammatory effect of the alcoholic extracts of N. sativa seeds and its callus on mix glial cells of rat with regard to their thymoquinone (TQ) content was investigated. Callus induction was achieved for explants of young leaf, stem, petiole, and root of N. sativa on solid Murashige and Skoog (MS) medium containing 2,4-D (1 mg/l) and kinetin (2.15 mg/l). TQ content of the alcoholic extracts was measured by HPLC. Total phenols were determined using Folin–Ciocalteu method and antioxidant power was estimated using FRAP tests. The mix glial cells, inflamed by lipopolysaccharide, were subjected to anti-inflammatory studies in the presence of various amounts of TQ and the alcoholic extracts. Viability of the cells and nitric oxide production were measured by MTT and Griess reagent, respectively. The leaf callus obtained the highest growth rate (115.4 mg/day) on MS medium containing 2,4-D (0.22 mg/l) and kinetin (2.15 mg/l). Analyses confirmed that TQ content of the callus of leaf was 12 times higher than that measured in the seeds extract. However, it decreased as the calli aged. Decrease in the TQ content of the callus was accompanied with an increase in its phenolic content and antioxidant ability. Studies on the inflamed rat mix glial cells revealed significant reduction in the nitric oxide production in the presence of 0.2 to 1.6 mg/ml of callus extract and 1.25 to 20 μl/ml of the seed extracts. However, the extent of the effects is modified assumingly due to the presence of the other existing substances in the extracts.  相似文献   

11.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

12.
We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L?1 BAP + 1.0 mg L?1 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L?1 BAP + 0.5 mg L?1 NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot.  相似文献   

13.
Sandalwood (Santalum album L.) is a small evergreen, hemi-parasitic tree having more than 18 woody species that are mostly distributed in South Asia, Australia, and Hawaii. Its economical importance is derived from its heartwood oil, but its difficult propagation makes conservation essential. The percentage of seed germination is poor and germination time exceeds 12 mo. Vegetative propagation can be accomplished by grafting, air layering, or with root suckers, but the production of clones is inefficient and time consuming. In this study, efficient plant regeneration was achieved via indirect organogenesis from callus cultures derived from leaf tissues of S. album. Callus induction was induced when leaf explants were cultured on woody plant media (WPM) supplemented with either thidiazuron (TDZ) or 2,4-dichlorophenoxyacetic acid. The highest callus frequency (100%) was obtained when leaf tissue was cultured in the medium with 0.4 mg?l?1 TDZ. Fresh weight (141.92 mg) and dry weight (47 mg) of leaf-derived callus were highest in the medium supplemented with 0.8 mg?l?1 TDZ. The WPM medium supplemented with 2.5 mg?l?1 BA?+?0.4 mg?l?1 NAA was the most effective, producing the highest number of shoot buds (24.6) per callus. The highest number of shoots per explant (20.67) and shoot length (5.17 cm) were observed in media supplemented with 5.0 mg?l?1 BA and 3.0 mg?1?1 Kn, respectively. Plantlets were rooted on WPM medium with different concentrations of indole-3-butyric acid (IBA). The highest rooting percentage (91.67) and survival were achieved using WPM media with 1.5 mg?l?1 IBA. All plantlets survived acclimatization, producing healthy plants in the greenhouse. The current investigation showed efficient in vitro regeneration capabilities of S. album from leaf explants.  相似文献   

14.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

15.
Callus was initiated on Murashige and Skoog (MS) medium containing different combinations of growth regulators or different concentrations of vitamins from pericarp of six varieties of Capsicum annuum differing in their capsaicin content. Callus derived from pericarp of low capsaicin containing varieties was snowy white, friable and showed excellent growth. Callus initiation was delayed (10-15 days) in Punjab Lal, which had very high fruit capsaicin content (7.0 mg g?1 DW). It also showed relatively slow proliferation although callus obtained was white and friable. Several different media were tried to improve the initiation and the proliferation of the callus in this variety. Callus growth improved greatly by doubling the concentration of MS salts. Initiation time was reduced to 4-6 days by adding 10 mg l?1 NAA and 0.5 mg l?1 Kin in MS medium. Other combinations of growth regulators or increase in concentration of vitamins or activated charcoal (0.1%) resulted in poor callus growth and callus texture. Of all media tried, MS medium containing 2 mg l?1 2,4 D and 0.5 mg l?1 Kin was the best for callus initiation and proliferation.  相似文献   

16.
We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.  相似文献   

17.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

18.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature petiole explants of West Indian gherkin (Cucumis anguria L.). Calluses were induced from immature petiole explants excised on 7-day-old in vitro seedlings and mature petiole explants of 40-day-old in vivo plants. The maximum frequency of immature petiole explants (98.0 %) and mature petiole (91.5 %) produced green, compact organogenic callus in Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l?1 sucrose, 8.0 g l?1 agar and 4.0 μM naphthalene acetic acid (NAA) with 2.0 μM benzyl amino purine (BAP) after two successive subculture at 11 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MSB5 medium supplemented with 3.0 μM TDZ, 1.0 μM NAA and 0.05 mM L-glutamine with shoot induction frequency of immature petiole 45 shoots and mature petiole 40 shoots per explant. The shoots were excised from callus and elongated in MSB5 medium fortified with 3.0 μM gibberellic acid (GA3). Then elongated shoots were rooted in half strength MSB5 medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Plantlets with well-developed shoot and root systems were successfully acclimatized (95 %) in winter season and exhibited normal morphology and growth characteristics. The survival percentage differed with seasonal variations.  相似文献   

19.
In order to determine the most suitable in vitro tissue culture and plant regeneration conditions for the small flowered willow herb (Epilobium parviflorum Schreb), various explants were cultured on semi-solid MS media containing factorial combinations of plant growth regulators. Callus induction from hypocotyl, cotyledon, petiole and leaf explants was achieved on media containing 2,4-dichlorophenoxy acetic acid (2,4-D) and kinetin (KIN). All other growth regulator combinations [□-naphtaleneacetic acid (NAA) ± benzylaminopurine (BAP), NAA ± thidiazuron (TDZ), indol acetic acid (IAA) ± Zeatin (ZEA)] tested failed to respond. The best results with cotyledon- and petiole- derived callus were obtained from MS medium supplemented with 1.0 mg l?1 2,4-D + 0.1 mg l?1 KIN and 2.0 mg l?1 2,4-D + 0.2 mg l?1 KIN. It was observed that B5 basal medium was more effective than MS basal medium for producing seedling and the most effective seed sterilizing solution was 25 % (v/v) sodium hypochlorite (NaOCl). No plant regeneration was observed in either callus induction or during the subculturing stage. This is the first report on in vitro tissue culture study within the genus Epilobium.  相似文献   

20.
A rapid micropropagation system for Scabiosa tschiliensis Grunning, an ethnic medicinal plant, has been developed. Calluses were induced from leaf and petiole explants on Murashige and Skoog (MS) medium supplemented with 2.0 mg l?1 thidiazuron and 0.5 mg l?1 2,4-dicholorophenoxyacetic acid. In this medium, callus induction rate was about 94.05 %. Adventitious shoots developed from leaf (86.30 %) and petiole (83.33 %) calluses when cultured on MS medium containing 4.0 or 2.0 mg l?1 N6-benzyladenine (BA), respectively. Up to 73.85 % of the regenerated shoots formed complete plantlets on MS medium supplemented with 2.0 mg l?1 indole-3-butyric acid, with an average of 3.25 roots per shoot. Quantitative analysis of flavonoids showed that the phytochemical profiles of calluses and regenerated plants were similar to that of wild-type plants. The 2, 2-diphenyl-1-picrylhydrazyl assay revealed that the flavonoid extracts of calluses, adventitious shoots and wild-type plants had stronger antioxidant activities, the inhibitory concentrations being 23.944, 31.329 and 26.502 μg ml?1, respectively, where 50 % of DPPH was scavenged (IC50). Results showed that this perennial herb could be used as a potential source of new natural antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号