首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The purpose of this study was to develop an equation to predict VO2max from a submaximal elliptical cross-trainer test. Fifty-four apparently healthy subjects (25 men and 29 women, mean +/- SD age: 29.5 +/- 7.1 years, height: 173.3 +/- 12.6 cm, weight: 72.3 +/- 7.9 kg, percent body fat: 17.3 +/- 5.0%, and elliptical cross-trainer VO2max: 43.9 +/- 7.2 ml x kg(-1) x min(-1)) participated in the study and were randomly assigned to an original sample group (n = 40) and a cross-validation group (n = 14). Each subject completed an elliptical cross-trainer submaximal (3 5-minute submaximal stages) and a VO2max test on the same day, with a 15-minute rest period in between. Stepwise multiple regression analyses were used to develop an equation for estimating elliptical cross-trainer VO2max from the data of the original sample group. The accuracy of the equation was tested by using data from the cross-validation group. Because there was no shrinkage in R2 between the original sample group and the cross-validation group, data were combined in the final prediction equation (R2 = 0.732, standard error of the estimate = 3.91 ml x kg(-1) x min(-1), p < 0.05): VO2max = 73.676 + 7.383(gender) - 0.317(weight) + 0.003957(age x cadence) - 0.006452(age x heart rate at stage 2). The correlation coefficient between the predicted and measured VO2max values was r = 0.86. Dependent t-tests resulted in no significant differences (p > 0.05) between predicted (43.8 ml x kg(-1) x min(-1)) and measured (43.9 ml x kg(-1) x min(-1)) VO2max measurements. Results indicate that the protocol and equation developed in the current study can be used by exercise professionals to provide acceptably accurate estimates of VO2max in non-laboratory-based settings.  相似文献   

2.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

3.
4.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

5.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

6.
This study evaluated the body composition (underwater weighing) and cardiorespiratory function (VO(2)max and O(2)debt max measured by the treadmill exercise test) in 12 members of the women's volleyball team (mean age 17.4 years) and 11 members of the women's basketball team (mean age 17.6 years) that won the championship in the Japan Inter-high School Meeting. We also examined differences in the physical abilities between the members of the top teams of different events. The following results were obtained. (1) The mean values of the height and body weight were 168.7+/-5.89 cm and 59.7+/-5.73 kg in the volleyball players and 166.5+/-7.87 cm and 58.8+/-6.85 kg in the basketball players. (2) The mean %Fat was 18.4+/-3.29% in the volleyball players and 15.7+/-5.05% in the basketball players, and was similar to the reported values in elite adult players. (3) The mean VO(2)max was 2.78+/-0.32 L x min(-1) (46.5+/-2.90 ml x kg(-1) x min(-1)) in the volleyball players and 3.32+/-0.31 L x min(-1) (56.7+/-4.17 ml x kg(-1) x min(-1)) in the basketball players, and was similar to the reported values in elite adult players. (4) The mean O(2)debt max was 6.18+/-1.15 L (103.2+/-12.40 ml x kg(-1)) in the volleyball players and 7.92+/-1.80 L (134.3+/-23.24 ml x kg(-1)) in the basketball players. These values were 2.6 times and 3.3 times as high as the average values in high school students in general. (5) No significant difference was observed in any measured item of the physique, skinfold thickness, or body composition between the volleyball players and basketball players. (6) The VO(2)max and O(2)debt max were 22% and 28% higher in the basketball players than in the volleyball players.From these results, the female volleyball players and basketball players evaluated in this study had the physical abilities needed to win the championship in the Japan Inter-high School Meets, i.e. a large FFM and excellent aerobic and anaerobic work capacities. Also, basketball appears to require higher aerobic and anaerobic work capacities than volleyball.  相似文献   

7.
Aerobic capacity and body composition were measured at 3 time points over a 1-year period in 26 Division 1A women soccer players from Texas A&M University, in order to determine whether there were seasonal changes in these parameters. Subjects were tested in December, immediately following a 4-month competitive season; in April, following 15 weeks of strength and conditioning; and immediately prior to the start of the regular season in August, following a 12-week summer strength and conditioning program. A periodized strength and conditioning program design was incorporated in order to optimize anaerobic and oxidative capacity immediately prior to the regular competitive season. Significant differences in VO2max were measured between August (49.24 +/- 4.38 ml x kg(-1) x min(-1)) and December (44.87 +/- 4.61 ml x kg(-1) x min(-1)). No significant changes in aerobic capacity were found between April (47.43 +/- 4.01 ml x kg(-1) x min(-1)) and August (49.64 +/- 5.25 ml x kg(-1) x min(-1)). Significant increases in body fat were measured between August (15.71 +/- 2.92%) and December (18.78 +/- 2.79%), before and after the competitive season, respectively. No significant changes in body fat were found between April (16.24 +/- 2.95%) and August (15.71 +/- 2.92%). The results of this study suggest that decreases in muscle mass over the course of a regular competitive season contribute to decreases in aerobic capacity in collegiate women soccer players. Although it is unknown whether this decrease in muscle mass is the result of inadequate training or a normal adaptation to the physiological demands imposed by soccer, the results of the current study suggest that resistance training volume should be maintained during the competitive season, in order to maintain preseason levels of muscle mass.  相似文献   

8.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

9.
This study examined the validity of the Yo-yo Intermittent Endurance Test (Level 1; YYIET) as indicator of aerobic power in youth soccer players. Cardiorespiratory responses were determined in 18 moderately trained nonelite youth soccer players (age, 16.6 +/- 0.8 years; height, 178.7 +/- 6.2 cm; body mass, 69.8 +/- 6.0 kg; VO2peak, 52.8 +/- 7.4 ml x kg(-1) x min(-1)) while performing the YYIET and an incremental treadmill test. Maximal heart rate (HRmax), respiratory exchange ratio (RER), O2 pulse, VO2peak, and maximal ventilation (VEmax) were measured. Group YYIET VO2peak, HRmax, RER, and O2 pulse were not significantly different from treadmill responses (p > 0.05). VEmax was significantly lower (p < 0.05) during the YYIET compared to the treadmill condition. No significant correlation was found between treadmill VO2peak and YYIET performance (p > 0.05). This study showed that the YYIET elicits peak VO2 and HR responses. However, YYIET performance results were not related to VO2peak measured in laboratory. Furthermore, the individual VO2peak reached during the TM did not reflect the VO2peak obtained during the YYIET, as shown by the large limits of agreement. As a consequence, compared to other shuttle run field tests, YYIET seems to be a weak indicator of aerobic power in youth moderately trained youth soccer player.  相似文献   

10.
Fifteen highly trained distance runners VO(2)max 71.1 +/- 6.0 ml.min(-1).kg(-1), mean +/- SD) were randomly assigned to a plyometric training (PLY; n = 7) or control (CON; n = 8) group. In addition to their normal training, the PLY group undertook 3 x 30 minutes PLY sessions per week for 9 weeks. Running economy (RE) was assessed during 3 x 4 minute treadmill runs (14, 16, and 18 km.h(-1)), followed by an incremental test to measure VO(2)max. Muscle power characteristics were assessed on a portable, unidirectional ground reaction force plate. Compared with CON, PLY improved RE at 18 km.h(-1) (4.1%, p = 0.02), but not at 14 or 16 km.h(-1). This was accompanied by trends for increased average power during a 5-jump plyometric test (15%, p = 0.11), a shorter time to reach maximal dynamic strength during a strength quality assessment test (14%, p = 0.09), and a lower VO(2)-speed slope (14%, p = 0.12) after 9 weeks of PLY. There were no significant differences in cardiorespiratory measures or VO(2)max as a result of PLY. In a group of highly-trained distance runners, 9 weeks of PLY improved RE, with likely mechanisms residing in the muscle, or alternatively by improving running mechanics.  相似文献   

11.
The purpose of this study was to assess and quantify the health outcomes associated with a moderate-intensity (50% VO2R) exercise program designed to achieve the American College of Sports Medicine net caloric expenditure guideline of 1,000 kcal x wk(-1). Fifteen apparently healthy but sedentary premenopausal women with the baseline characteristics (mean +/- SD age, height, weight, body composition, and VO2max: 37.4 +/- 6.3 yr, 166.2 +/- 6.2 cm, 72.1 +/- 11.2 kg, 32.5 +/- 5.8%, and 34.8 +/- 5.8 mL x kg(-1) x min(-1), respectively) participated in and completed the study. Exercise training was performed 3-4 days per week for 10 weeks in a progressive manner at moderate intensity (50% VO2R). There were significant (P < 0.05) improvements in VO2max (+2.5 mL x kg(-1) x min(-1)), systolic (-13.7 mm Hg) and diastolic (-6.4 mm Hg) blood pressure, high-density lipoprotein cholesterol (+3.2 mg x dL(-1)), fasting blood glucose (-4.9 mg x dL(-1)), and percent body fat (-1.6%). Although the American College of Sports Medicine specifies that the energy expenditure goal should be a net caloric expenditure of 1,000 kcal x wk(-1) and classifies relative moderate intensity as 40-59% of heart rate reserve or VO2R, we are unaware of any previous investigations that have examined the specific health outcomes associated with an exercise program fulfilling these requirements. Results indicate that significant health benefits will be conferred to previously sedentary, premenopausal women who engage in a moderate-intensity, 10-week exercise program designed to fulfill the net energy expenditure guideline of 1,000 kcal x wk(-1).  相似文献   

12.
This study examined the effects of a 15-day cessation of training on maximal oxygen consumption and selected physiological variables (maximal heart rate, cardiac output [Q], stroke volume [SV], arteriovenous oxygen difference [(a-v)O2 diff], blood plasma concentration) in 15 women middle-distance competitive runners (.VO2max: 49.8 +/- 1.1 ml.kg(-1).min(-1)). Subjects were randomly assigned to a cessation training (CT, n = 7) or maintenance training (MT, n = 8) group and tested every 5 days. Q was measured by CO2 rebreathing from which SV and (a-v)O2 diff were calculated. No significant changes were found at day 5. After 10 days there was a significant decrement in .VO2max (3.8 ml.kg(-1).min(-1)) in the CT group, being significantly lower than MT but no changes thereafter in any physiological variables. Performance (2,400 m) times did not change for MT but was significantly slower (21.5 +/- 7.1 seconds) for the CT group after 15 days, corresponding to the 7.8% decrease in .VO2max. These findings suggest that in competitive women middle-distance runners, actual performance decrements found after 15 days of CT most likely are due to declines in .VO2max.  相似文献   

13.
In practice, the Bruce protocol is the most commonly used treadmill protocol to assess maximal oxygen consumption (V(.-)O2max). It has been suggested that a running protocol (e.g., Astrand) may elicit a comparatively higher V(.-)O2max and different cardiorespiratory responses when applied to moderately trained runners. Thus, the purpose of this study was to compare V(.-)O2max and other cardiorespiratory responses as elicited by the standard Bruce and a modified Astrand treadmill protocol in moderately trained runners. Fifteen women (age = 21 years, height = 171.5 cm, weight = 63 kg, and body fat = 18%) and 15 men (age = 26 years, height = 177 cm, weight = 72 kg, and body fat = 9%) who were moderately trained runners completed a standard Bruce and modified Astrand protocol (random order), separated by approximately 7 days. Heart rate, Borg ratings of perceived exertion, blood pressure, and pulmonary gas exchange variables were measured during the exercise tests using standard laboratory procedures. This study revealed V(.-)O2max values between the Bruce protocol (51.3 +/- 11.6 ml x kg(-1) x min(-1)) and modified Astrand (51.5 +/- 10.9 ml x kg(-1) x min(-1)) were not significantly different in either the men or the women. However, the Bruce protocol elicited significantly higher maximum treadmill time in men and maximum respiratory exchange ratio (RERmax) and maximum minute ventilation (VEmax) values in both genders. Conversely, the modified Astrand elicited a higher HRmax. These data suggest that V(.-)O2max in both moderately trained men and women runners is independent of treadmill protocol despite differences in HRmax, RERmax, and VEmax.  相似文献   

14.
On the basis of cross-sectional data, we previously reported that the absolute, but not the relative (%), rate of decline in maximal oxygen consumption (VO(2 max)) with age is greater in endurance-trained compared with healthy sedentary women. We tested this hypothesis by using a longitudinal approach. Eight sedentary (63 +/- 2 yr at follow-up) and 16 endurance-trained (57 +/- 2) women were reevaluated after a mean follow-up period of 7 yr. At baseline, VO(2 max) was ~70% higher in endurance-trained women (48.1 +/- 1.7 vs. 28.1 +/- 0.8 ml. kg(-1). min(-1). yr(-1)). At follow-up, body mass, fat-free mass, maximal respiratory exchange ratio, and maximal rating of perceived exertion were not different from baseline in either group. The absolute rate of decline in VO(2 max) was twice as great (P < 0.01) in the endurance-trained (-0.84 +/- 0.15 ml. kg(-1). min(-1). yr(-1)) vs. sedentary (-0.40 +/- 0.12 ml. kg(-1). min(-1). yr(-1)) group, but the relative rates of decline were not different (-1.8 +/- 0.3 vs. -1.5 +/- 0.4% per year). Differences in rates of decline in VO(2 max) were not related to changes in body mass or maximal heart rate. However, among endurance-trained women, the relative rate of decline in VO(2 max) was positively related to reductions in training volume (r = 0.63). Consistent with this, the age-related reduction in VO(2 max) in a subgroup of endurance-trained women who maintained or increased training volume was not different from that of sedentary women. These longitudinal data indicate that the greater decrease in maximal aerobic capacity with advancing age observed in middle-aged and older endurance-trained women in general compared with their sedentary peers is due to declines in habitual exercise in some endurance-trained women. Endurance-trained women who maintain or increase training volume demonstrated age-associated declines in maximal aerobic capacity not different from healthy sedentary women.  相似文献   

15.
The purpose of this study was to investigate the influence of additional resistance training on cardiorespiratory endurance in young (15.8 ± 0.8 yrs) male basketball players. Experimental group subjects (n=23) trained twice per week for 12 weeks using a variety of general free-weight and machine exercises designed for strength acquisition, beside ongoing regular basketball training program. Control group subject (n=23) participated only in basketball training program. Oxygen uptake (VO(2max)) and related gas exchange measures were determined continuously during maximal exercise test using an automated cardiopulmonary exercise system. Muscle power of the extensors and flexors was measured by a specific computerized tensiometer. Results from the experimental group (VO(2max) 51.6 ± 5.7 ml.min(-1).kg(-1) pre vs. 50.9 ± 5.4 ml.min(-1).kg(-1) post resistance training) showed no change (p>0.05) in cardiorespiratory endurance, while muscle strength and power of main muscle groups increased significantly. These data demonstrate no negative cardiorespiratory performance effects on adding resistance training to ongoing regular training program in young athletes.  相似文献   

16.
The Na(+)-K(+)-ATPase plays an important role in the maintenance of electrolyte balance in the working muscle and thus may contribute to endurance performance. This study aimed to investigate the associations between genetic variants at the Na(+)-K(+)-ATPase alpha2 locus and the response (Delta) of maximal oxygen consumption (VO(2 max)) and maximal power output (W(max)) to 20 wk of endurance training in 472 sedentary Caucasian subjects from 99 families. VO(2 max) and W(max) were measured during two maximal cycle ergometer exercise tests before and again after the training program, and restriction fragment length polymorphisms at the Na(+)-K(+)-ATPase alpha2 (exons 1 and 21-22 with Bgl II) gene were typed. Sibling-pair linkage analysis revealed marginal evidence for linkage between the alpha2 haplotype and DeltaVO(2 max) (P = 0.054) and stronger linkages between the alpha2 exon 21-22 marker (P = 0.005) and alpha2 haplotype (P = 0.003) and DeltaW(max). In the whole cohort, DeltaVO(2 max) in the 3.3-kb homozygotes of the exon 1 marker (n = 5) was 41% lower than in the 8.0/3.3-kb heterozygotes (n = 87) and 48% lower than in the 8.0-kb homozygotes (n = 380; P = 0.018, adjusted for age, gender, baseline VO(2 max), and body weight). Among offspring, 10.5/10.5-kb homozygotes (n = 14) of the exon 21-22 marker showed a 571 +/- 56 (SE) ml O(2)/min increase in VO(2 max), whereas the increases in the 10.5/4.3-kb (n = 93) and 4.3/4.3-kb (n = 187) genotypes were 442 +/- 22 and 410 +/- 15 ml O(2)/min, respectively (P = 0.017). These data suggest that genetic variation at the Na(+)-K(+)-ATPase alpha2 locus influences the trainability of VO(2 max) in sedentary Caucasian subjects.  相似文献   

17.
The purpose of this study was to investigate the effect of a short-term Swiss ball training on core stability and running economy. Eighteen young male athletes (15.5 +/- 1.4 years; 62.5 +/- 4.7 kg; sigma9 skinfolds 78.9 +/- 28.2 mm; VO2max 55.3 +/- 5.7 ml.kg(-1).min(-1)) were divided into a control (n = 10) and experimental (n = 8) groups. Athletes were assessed before and after the training program for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO2max, running economy, and running posture. The experimental group performed 2 Swiss ball training sessions per week for 6 weeks. Data analysis revealed a significant effect of Swiss ball training on core stability in the experimental group (p < 0.05). No significant differences were observed for myoelectric activity of the abdominal and back muscles, treadmill VO2max, running economy, or running posture in either group. It appears Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes. Specificity of exercise selection should be considered.  相似文献   

18.
Junkyard training involves heavy, cumbersome implements and nontraditional movement patterns for unique training of athletes. This study assessed the metabolic demands of pushing and pulling a 1,960-kg motor vehicle (MV) 400 m in an all-out maximal effort. Six male, strength-trained athletes (29 +/- 5 years; 89 +/- 12 kg) completed 3 sessions. Sessions 1 and 2 were randomly assigned and entailed either pushing or pulling the MV. Oxygen consumption (VO(2)) and heart rate (HR) were measured continuously. Blood lactate was sampled immediately prior to and 5 minutes after sessions 1 and 2. Vertical jump was assessed immediately prior to and after sessions 1 and 2. During session 3 a treadmill VO(2)max test was conducted. No significant differences (p < 0.05) in VO(2), HR, or blood lactate occurred between pushing and pulling efforts. VO(2) and HR peaked in the first 100 m, and from 100 m on, VO(2) and HR averaged 65% and 96% of treadmill maximum values (VO(2)max = 50.3 ml x kg(-1) x min(-1); HRmax = 194 b x min(-1)). Blood lactate response from the push and pull averaged 15.6 mmol.L(-1), representing 131% of the maximal treadmill running value. Vertical jump decreased significantly pre to post in both conditions (mean = -10.1 cm, 17%). All subjects experienced dizziness and nausea. In conclusion, a 400-m MV push or pull is an exhausting training technique that requires a very high anaerobic energy output and should be considered an advanced form of training. Strength coaches must be aware of the ultra-high metabolic and neuromuscular stresses that can be imposed by this type of training and take these factors into consideration when plotting individualized training and recovery strategies.  相似文献   

19.
We tested whether supplementation with L-arginine can augment aerobic capacity, particularly in conditions where endothelium-derived nitric oxide (EDNO) activity is reduced. Eight-week-old wild-type (E(+)) and apolipoprotein E-deficient mice (E(-)) were divided into six groups; two groups (LE(+) and LE(-)) were given L-arginine (6% in drinking water), two were given D-arginine (DE(+) and DE(-)), and two control groups (NE(+) and NE(-)) received no arginine supplementation. At 12-16 wk of age, the mice were treadmill tested, and urine was collected after exercise for determination of EDNO production. NE(-) mice demonstrated a reduced aerobic capacity compared with NE(+) controls [maximal oxygen uptake (VO(2 max)) of NE(-) = 110 +/- 2 (SE) vs. NE(+) = 122 +/- 3 ml O(2). min(-1). kg(-1), P < 0.001]. This decline in aerobic capacity was associated with a diminished postexercise urinary nitrate excretion. Mice given L-arginine demonstrated an increase in postexercise urinary nitrate excretion and aerobic capacity in both groups (VO(2 max) of LE(-) = 120 +/- 1 ml O(2). min(-1). kg(-1), P < 0.05 vs. NE(-); VO(2 max) of LE(+) = 133 +/- 4 ml O(2). min(-1). kg(-1), P < 0.01 vs. NE(+)). Mice administered D-arginine demonstrated an intermediate increase in aerobic capacity in both groups. We conclude that administration of L-arginine restores exercise-induced EDNO synthesis and normalizes aerobic capacity in hypercholesterolemic mice. In normal mice, L-arginine enhances exercise-induced EDNO synthesis and aerobic capacity.  相似文献   

20.
Zhao B  Moochhala SM  Tham Sy  Lu J  Chia M  Byrne C  Hu Q  Lee LK 《Life sciences》2003,73(20):2625-2630
Several studies have shown that the angiotensin-converting enzyme (ACE) I allele is associated with enhanced physical performance. We investigated whether this phenomenon is observed in a cohort of 67 Chinese men in Singapore. Angiotensin-converting enzyme ID polymorphism was typed with PCR method and maximal oxygen uptake (VO(2max)) of the DD, ID, and II genotypes was compared. Analysis of covariance revealed that VO(2max) was significantly higher (p<0.05) for the DD genotype (57.86 +/- 3.5 ml.kg.(-1)min(-1)) versus the ID (50.58 +/- 1.80 ml.kg.(-1)min(-1)) or II (50.48 +/- 1.58 ml.kg.(-1) min(-1)) genotype. Our findings suggest that the ACE DD genotype in young adult Chinese males is associated with higher levels of VO(2max).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号