首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Humic acids (HAs) extracted from different organic wastes have been characterised by chemical methods. The chemical properties of HAs showed differences depending on the source from which they were obtained. The C content in HAs from organic wastes (41.1-63.2%) fluctuated around the C value in soil HA with the exception of composted bark and tobacco dust. Compared with soil HA, the N contents of HAs from sewage sludge and brewery sludge were found much higher than the others. E4:E6 ratios for HAs in organic wastes were generally greater than that for soil HA, which indicated a low degree of condensation and humification. The carboxyl and phenolic-OH group contents ranged 0.51-2.23 and 11.1-20.7 meq g(-1), respectively. High values of carboxyl and phenolic-OH contents indicated that these materials were still within early stages of humification.  相似文献   

2.
A calcareous soil was treated with an organic fertilizer mixture of grape debris and peat, or with pig manure, chicken manure, city refuse or with aerobic or anaerobic sewage sludges. Changes in different fractions of carbon and nitrogen were followed by analysis of the soil, immediately after these additions, after they had decomposed for six months in the soil, after a maize harvest, and after a subsequent barley harvest. The various forms of carbon had decreased after six months. The rate of decrease varied with the nature of the organic materials. In all samples, the fulvic acids fraction decreased most. The main transformations happened during the first six months whether there was a crop growing or not, but the crops had no influence on the breakdown of the organic materials. The ratio of humic acids/fulvic acids had increased after six months of humification and, in general terms, the final values of the ratio oxidizable carbon/extractable carbon were lower than the initial ones, indicating a higher degree of humification in the organic matter by the end of the experiment. The total nitrogen level remained practically constant after the first six months of humification even after the second crop. Part of the organic nitrogen of the soil samples amended with chicken manure, city refuse or the two sludges was transformed into mineral nitrogen during the humification process. The extractable nitrogen values increased because of the fertilizer applied during the pot trials.  相似文献   

3.
In this study changes in the properties of natural organic matter (NOM) were studied during composting of sewage sludge in a laboratory experiment using the pile method. Typical physicochemical parameters were measured during 53 days of composting including humic fractions. The effects of humification on the molecular properties of humic acids (HA) were investigated by 13C CP/MAS NMR spectroscopy. On the basis of chemical analyses, 53 days of composting sewage sludge with structural material can be divided into three phases: (i) domination of rapid decomposition of non-humic, easily biodegradable organic matter (two to three weeks), (ii) domination of organic matter humification and formation of polycondensed, humic-like substances (the next two weeks), (iii) stabilization of transformed organic material and weak microbial activity. Spectroscopic characterization (13C NMR) of compost humic acids reveals changes in their structures during maturation. The changes are highly correlated with the processes taking place in bulk compost.  相似文献   

4.
The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amended soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol.  相似文献   

5.
In this study, two olive mill wastes - exhausted olive cake (EOC) and paste of olive mill wastewater naturally dehydrated (POMW) - were co-composted and mixed with 25% sesame bark (SB). The humification process was evidenced by quantifying the humic substances and the generally accepted humification indices: (i) the ratio of humic acid (HA) carbon to fulvic acid (FA) carbon (CHA/CFA), (ii) the ratio of water soluble organic carbon (CW) to total organic nitrogen (Cw/Norg), (iii) and the ratio of humic acid carbon to total organic carbon CHA/Corg and by determining the absorbance ratios: E2/E4, E2/E6 and E4/E6. The results showed that the time required to reach maturity was dependant on the chemical properties of the initial raw materials used. The compost including EOC had more nitrogen and synthesised more polymerised HA, the POMW compost also had acceptable degrees of stability and maturity at the end of the process. Maturation was confirmed by a decline in Cw below 1.7, an increase in nitrogen, in HA, in CHA/CFA and an elimination of phytotoxicity. Composts produced with olive mill wastes, experimented on potato culture in the field, can be considered beneficial to soils because of their humification indexes and no toxicity.  相似文献   

6.
The physical-chemical properties of humic acid fractions (HA) derived from urban sludge (CUS) and cattle manure (CCM) composts, and agricultural soil (FS) fertilised with sludge for ten years, were initially explored by elemental analysis, UV-Vis, FTIR and fluorescence. These properties were then compared with reference HA of terrestrial (SO) and aquatic (SR). To correlate the chemical properties and the reactivity of these HA, the binding of Cd(II) was investigated by fluorescence quenching techniques (FQ). Indeed, fluorescence spectroscopy has been proven to be a powerful tool in discriminating the origin, chemical features and degree of humification of naturally occurring organic matter. The HA compost exhibited higher N content, smaller molecular size and lower aromaticity than the reference HA. In addition, the CUS sample showed clear evidence of impurities, most likely of microbial origin, which was not evident in the FS sample (i.e. during its further evolution/humification in soil). The quenching effect of Cd(II) is adequately described by a modified Stern-Volmer equation, which is based on two population fluorophores, one not being accessible. The resulting Cd-HA logK (conditional association constants) decreased in the order SO > CUS > FS > CCM > SR, thus reflecting the relative binding affinity. A similar order was found for the corresponding Cd(II) capacity, which is based on total Cd content in Cd-humate precipitates. Lastly, fluorescence analysis of the soluble and insoluble fractions clearly revealed the fluorophores most involved in the binding process. In conclusion, our work provides evidence that compost is a reservoir of “humic-like” material capable of compensating for any organic carbon deficit in soil and lessening the effect of inorganic pollutants.  相似文献   

7.
Three soils which had been amended for several years with pig slurry, cattle slurry, and sewage sludge were dry-sieved to obtain microaggregates in the size range of 250–125, 125–50, and <50 μm. With amendments, aggregate size distribution of whole soils was shifted to larger sizes, especially for the most fragile soil, whereas percent content of microaggregates decreased except for the lower size aggregates of the fragile soil. Particle size distribution of microaggregates revealed an increase in percent sand and a reduction of percent silt and clay in the <50 μg size fraction for all soils. These results showed the aggregation effect induced by the organic waste additions. Aggregate stability of microaggregates revealed significant correlation with humic substances content (humic acids alone and humic plus fulvic acids) and non significant with total organic matter substantiating the belief that humic substances are the predominant binding agents in this aggregation range. Molecular weight distribution of humic acids extracted from microaggregates of unamended soils demonstrated that the lower the soil aggregate size distribution, the larger the contribution of the high molecular weight fraction. All microaggregates from amended soils showed a progressive increase of the high molecular weight humic acids with decreasing size, reaching a maximum in the <50 μm fraction. In this aggregate size a parallel enhancement of the aggregate stability was also evident. It is concluded that a close relationship exists between aggregate stability and high molecular weight humic substances. Additions to soils of organic material containing high molecular weight constituents would represent a useful management practice to improve aggregate stability.  相似文献   

8.
The chemical changes occurring in a cattle manure (CM) and a mixture of two-phase olive pomace and CM (OP+CM) after vermicomposting with Eisenia andrei for eight months were evaluated. Further, humic acid (HA)-like fractions were isolated from the two substrates before and after the vermicomposting process, and analyzed for elemental and acidic functional group composition, and by ultraviolet/visible, Fourier transform infrared and fluorescence spectroscopies. Before vermicomposting, the HA-like fractions featured a prevalent aliphatic character, large C contents, small O and acidic functional group contents, a marked presence of proteinaceous materials and polysaccharide-like structures, extended molecular heterogeneity and small degrees of aromatic ring polycondensation, polymerisation and humification. After vermicomposting, the total extractable C and HA-C contents in the bulk substrates increased, and the C and H contents, aliphatic structures, polypeptidic components and carbohydrates decreased in the HA-like fractions, whereas O and acidic functional group contents increased. Further, an adequate degree of maturity and stability was achieved after vermincomposting, and the HA-like fractions, especially that from OP+CM, approached the characteristics typical of native soil HA. Vermicomposting was thus able to promote organic matter humification in both CM alone and in the mixture OP+CM, thus enhancing the quality of these materials as soil organic amendments.  相似文献   

9.
Raj D  Antil RS 《Bioresource technology》2011,102(3):2868-2873
The objective of this study was to evaluate changes in physical, chemical and biological parameters to assess the maturity and stability of composts prepared from mixture of different farm and agro-industrial wastes over a period of 150 days. All the composts appeared granular, dark grey in color without foul odor and attained an ambient temperature at 120 days of composting indicating the stable nature of composts. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss >42%, C:N ratio <15, water soluble organic carbon (C(w)):organic N (N(org)) ratio <0.55, humic acid (HA):fulvic acid (FA) ratio >1.9, humification index (HI) >30%, cation exchange capacity (CEC):total organic carbon (TOC) ratio >1.7 and germination index (GI) >70%. Compost enriched with sewage sludge, pressmud and poultry waste matured earlier compared to composts either enriched with distillery effluent or un-enriched.  相似文献   

10.
This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95–98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.  相似文献   

11.
In alpine environments, colonies of snow vole (Chionomys nivalis Martins) cause strong pedoturbation, which may affect humification process and soil organic matter (SOM) cycling, with repercussions on the hormone‐like activity of organics. We investigated the effect of snow vole pedoturbation on the chemical and spectroscopic features of soil organic fractions, and the potential hormone‐like activity of humic and fulvic acids (HA, FA). The study site was located on the high‐mountain environment of the Majella massif (central Italy). Pedoturbated and regular soils were morphologically described and characterized for pH and content of total organic carbon, total extractable carbon, HA, and FA. Both HA and FA were extracted and investigated using attenuated total reflectance/Fourier transform infrared (ATR/FTIR), nuclear magnetic resonance with high‐resolution magic angle spinning (HRMAS‐NMR), and 1H‐13C heteronuclear single quantum coherence (HSQC). HA and FA were also tested for their auxin‐like and gibberellin‐like activities. Results provide evidences that bioturbated and regular soils contain a poorly decomposed SOM, but HA and FA with a well‐defined molecular structure. The HA and FA from both bioturbated and regular soils show a hormone‐like activity with a different allocation along the soil profile. In the regular soil, the highest auxin‐like activity was shown by HA and FA from Oe1 horizon, while gibberellin‐like activity was expressed by FA from Oe2 horizon. Burrowing activity determines a redistribution of organics throughout the profile with a relatively high auxin‐like activity in the FA from straw tunnel wall (STW) and gibberellin‐like activity in the HA from vole feces (VF). The relative high presence of carboxylic acids, amides, proteins, and amino acids in the FA from STW and the aromatic moieties in the HA from VF put evidences for their different behavior. The fact that snow vole activity has modified the chemical and biological properties of SOM in these soils otherwise considered governed only by low temperature has important ecological implications such as the preservation of soil fertility and vegetal biodiversity.  相似文献   

12.
The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.  相似文献   

13.
Zier  Nadja  Schiene  Rainer  Koch  Helmut  Fischer  Klaus 《Plant and Soil》1999,213(1-2):241-250
Soils disturbed by long-term opencast mining were treated with organic waste materials for reclamation. Humic substances were extracted from waste and soil samples and analysed using pyrolysis-gas chromatography/mass spectrometry and electrofocusing. Furthermore, analytical pyrolysis permits to study all starting materials in situ. According to structural similarities, the statistical evaluation of the pyrolysis results clearly indicates three sample groups. The first group, called compost, implies the waste materials compost and composted sewage sludge. Moreover, pyrolysis revealed that coal humic substances are predominant in brown coal sludge, pure mine soils and mine soils treated with the different organic waste materials. They constitute the second group. The sewage sludge contains a high nitrogen potential, as expected, and represents the third group. Finally, pyrolysis generally showed the specific structural characteristics of humic and fulvic acids, respectively. Electrofocusing yielded for all samples a signal pattern that is typical of humic substances. However, number and ratio of the signals differ according to the special structural features of the samples. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
基于煤矿区不同复垦年限土壤,研究有机肥的分解动态及其驱动因素,可为有机肥合理施用和矿区土壤培肥提供科学依据。本研究以山西煤矿复垦区为试验平台,采用尼龙网袋填埋法,在复垦年限为1年(复垦初期阶段,R1)、10年(复垦中期阶段,R10)和30年(复垦长期阶段,R30)的土壤中进行有机肥分解试验(有机肥碳量与土壤重量比例为4∶100)。供试有机肥为牛粪和猪粪,以不添加有机肥为对照(CK),填埋深度为15 cm。在填埋后的第12、23、55、218、281和365 d采集尼龙网袋样品,测定有机肥残留量、土壤微生物生物量碳(MBC)和可溶性有机碳(DOC)含量,采用方差分解分析(VPA)量化土壤性质、有机肥性质和水热条件对有机肥分解的贡献率。结果表明: 猪粪的分解速率显著高于牛粪。猪粪的腐殖化系数(46.3%)显著低于牛粪(71.7%);猪粪在复垦30年的土壤中的腐殖化系数(44.5%)显著低于复垦1年和10年的土壤(47.2%);而牛粪在3种复垦年限土壤中的腐殖化系数无显著差异。猪粪和牛粪的易分解碳库占总碳库的比例分别为52%和26%,易分解碳库分解速率常数分别为0.00085和0.00074 ℃-1,且差异显著。在0~218 d填埋时间段内,猪粪还田对复垦土壤MBC和DOC的提升作用显著高于牛粪,在281~365 d填埋时间段内,两者差异不显著。有机肥还田下,3种复垦年限土壤中MBC和DOC的增长幅度均表现为R1 >R10 ≈ R30。在土壤性质、物料性质和水热条件中,有机肥性质是其分解的主要影响因子,对有机肥分解的单独贡献率最大,为17.9%。综上,猪粪的分解受到土壤复垦年限的影响,而牛粪的分解不受土壤复垦年限的影响。在不同复垦年限土壤中,牛粪的腐殖化系数显著高于猪粪,在煤矿复垦区建议选择腐熟的牛粪进行有机肥还田,以提高土壤肥力。  相似文献   

15.
In pot tests, MEMC, quintozene, captafol, carboxin, thiabendazole, carbendazim, benomyl and thiophanate-methyl used as seed treatments gave much better control of cowpea seedling rot in light-textured sandy and loamy sand soils than in heavy-textured loam and silt loam soils inoculated with Rhizoctonia solani. Disease control by chloroneb was not altered by soil texture. Amendment of sandy soil with montmorillonite reduced disease control with all fungicides, except chloroneb and carboxin; similar amendments with kaolinite decreased efficacy of MEMC and captafol. Green manuring with cluster bean reduced disease control by MEMC, captafol, benomyl and thiophanate-methyl; sunnhemp reduced efficacy of MEMC. Most fungicides gave poor disease control when farm yard manure or biogas sludge was added to soil, the sludge having the more marked effect. All the fungicides tested, except carboxin, were inactivated to different extents by humic acid extracted from farm yard manure.  相似文献   

16.
A continuous flow soil respirometer was used to evaluate the effect of nutrient addition, application rate, and application frequency on biodegradation of 2 complex oily sludges in soil. The most rapid biodegradation of the refinery sludge occurred when nitrogen was added to reduce the carbon to nitrogen (C∶N) ratio to 9∶1. The petrochemical sludge was degraded most rapidly when nitrogen, phosphorus, and potassium were added at a rate of 124∶1, C∶NPK; CO2evolution from both wastes increased with increasing application rates, but the fraction of applied sludge which degraded decreased with increasing application rates. Small frequent applications resulted in a slight increase in respiration rate per unit applied over a single equivalent application, indicating that repeated applications of smaller amounts of sludge result in a more rapid rate of decomposition. The population of total soil bacteria was greatest when 1% of either sludge was added to the soil, whereas 5 and 10% sludge additions resulted in slightly lower microbial populations.  相似文献   

17.
Organic solid wastes from urban environment as iron sources for sorghum   总被引:1,自引:0,他引:1  
Sorghum (Sorghum bicolor L. Moench) which is susceptible to Fe deficiency was grown in two different soils in a glasshouse with two different organic urban wastes (sewage sludge and dog manure) to ascertain their ability to supply Fe and other micronutrients to plants. One soil was calcareous with a history of Fe deficiency. Sewage sludge and dog manure at an application rate of 15,000 g/g to this soil effectively supplied Fe to plants. This effect was not present when the ash rather than the organic matter was used. Ferrous sulfate and Fe-EDDHA (Fe[ethylenediamine di-0-hydroxyphenylacetate]) likewise were not effective. Infrared spectra revealed differences in the fulvic acid for the two sources of solid wastes. The results imply that some sources of organic wastes may be useful in prevention or correction of Fe deficiency in calcareous soils.  相似文献   

18.
The change of the degree of stability of compost during the composting process was a kind of guideline for our study. This stability was estimated by monitoring the chemical fractionation (extraction of humic and fulvic acids, and humin) during two cycles of composting. Change of humin (H), humic-like acid carbon (CHA) and fulvic-like acid carbon (CFA) fractions during the composting process of municipal solid wastes were investigated using two windrows W1 (100% of municipal solid wastes) and W2 (60% of municipal solid wastes and 40% of dried sewage sludge). Humin and fulvic acid fractions in the two windrows decreased since the start of composting process and tend to stabilize. At the end of composting process, humic acid fraction is more important in the windrow without sludge (W1) than the one with sludge (W2). The humification indexes used in this study showed that the humic-like acid carbon fraction production takes place largely during the phase of temperature increase (thermophilic phase), and it appeared very active in the windrow W2. At the end of composting process, the E4/E6 ratio value indicated that the compost of W1 is more mature than the compost of W2. The humification ratio (HR) allowed a correct estimation of compost organic matter stabilization level.  相似文献   

19.
Bioremediation is a commonly used process for the remediation of soils and sludges containing hydrocarbon compounds. The extent of chemical concentration reduction that occurs in bioremediation processes and the concentration of residual chemicals varies widely for different soils and sludges and for different processes. Along with changes in chemical concentration, measures of toxicity and chemical mobility are important information as site remediation decisions are increasingly being made within a risk-based corrective action framework.

This review article presents illustrative data from studies that evaluated the effectiveness of bioremediation processes and that contained information about changes in chemical mobility and soil or sludge toxicity. The weight-of-evidence data presented indicated that, as part of the bioremediation process, there is a reduction of the apparent toxicity of the soils and sludges that were treated. In addition, remaining chemical constituents generally were less mobile. The patterns were consistent for both laboratory and field-scale bioremediation studies.  相似文献   

20.
Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号