首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The parameter Amax/Km (product of reactant enzyme mass in perfused microvessels and the constant kcat/Km), calculated from in vivo assays of pulmonary endothelial ectoenzymes (e.g., angiotensin-converting enzyme, ACE), can provide estimates of the perfused pulmonary microvascular surface area (PMSA) in the absence of enzyme dysfunction. We examined the relationship between PMSA and pulmonary blood flow (Qb) in anesthetized rabbits placed on total heart bypass, using [3H]benzoyl-Phe-Ala-Pro (BPAP) as the ACE substrate. When Qb was increased from 250 to 1,100 ml/min, at zone 3 conditions, pulmonary arterial pressure increased, pulmonary vascular resistance (PVR) decreased, and Amax/Km increased linearly, reflecting increasing PMSA. When only the left lung was perfused, increasing Qb from 250 to 636 +/- 17 ml/min (the last value representing fully recruited and/or distended vascular bed), PVR decreased, while Amax/Km increased. When Qb was further increased to 791 +/- 44 ml/min, both PVR and Amax/Km remained unchanged, confirming the lack of additional changes in PMSA. We conclude that Amax/Km provides a sensitive indication of PMSA, because it 1) increases with increasing Qb and decreasing PVR, 2) reaches a maximum at Qb values that correspond to the minimal values in PVR, and 3) like PVR, did not change with further increases in Qb. Compared with predicted changes in PMSA produced by either microvascular recruitment alone or distension alone, our data indicate that recruitment is a larger contributor to the observed increase in PMSA.  相似文献   

2.
Angiotensin-converting enzyme lines the luminal surface of pulmonary capillary endothelial cells. The metabolism of its synthetic substrate, 3H-benzoyl-L-phenylalanyl-L-alanyl-L-proline ([3H]BPAP) has been used as an indicator of pulmonary microvascular function. Because the flow-volume status of the pulmonary capillaries is dependent on intra-alveolar pressure, we have studied the effects of airway pressure on endothelial plasmalemmal angiotensin-converting enzyme function in rabbit lungs in vivo. Static inflation of the lungs to a pressure of 0 or 5 Torr did not change percent transpulmonary metabolism and Amax/Km ratio (defined as E X Kcat/Km and thus, under normal conditions, an indirect measure of perfused endothelial luminal surface area) compared with control measurements during conventional mechanical ventilation. When the inflation pressure was increased to 10 Torr, percent metabolism of [3H]BPAP remained unaltered but Amax/Km decreased to 60% of the control value. This decrease was in close relation to the decrease in pulmonary blood flow. Addition of 5 cmH2O positive end-expiratory pressure (PEEP) to the mechanical ventilation also decreased Amax/Km values and pulmonary blood flow but did not influence percent metabolism of [3H]BPAP. These results suggest that the detected alterations in apparent enzyme kinetics were more likely due to hemodynamic changes than to alterations in angiotensin-converting enzyme function. Thus high static alveolar pressures as well as PEEP probably reduced the fraction of perfused microvessels as reflected in changes in Amax/Km ratios. This information should prove useful in interpreting the response of pulmonary endothelial enzymes to injury.  相似文献   

3.
We investigated changes in angiotensin converting-enzyme (ACE) activity before and at 5, 15, 60, and 240 min after 20 micrograms phorbol myristate acetate/kg body wt iv in conscious rabbits. ACE activity was estimated in vivo from the single-pass transpulmonary metabolism of the synthetic substrate [3H]benzoyl-Phe-Ala-Pro [( 3H]BPAP) under first-order reaction conditions. Within 5 min after PMA administration, all animals developed profound granulocytopenia (15% of control) and moderate thrombocytopenia (57% of control), both lasting for the duration of the experiment. Concomitantly, there was a significant decrease in the transpulmonary metabolism of [3H]BPAP and the calculated apparent first-order reaction constant Amax/Km of ACE for [3H]BPAP. No histological evidence of lung injury was observed at these times. Since a concomitant fall in the permeability surface area product for urea was also observed, we considered that the apparent decline in ACE activity might have resulted from a reduction in perfused endothelial surface area. To resolve this, we studied the effect of PMA on the Km (a measure of enzyme affinity for its substrate) and Amax (a derivative of Vmax that is dependent upon total enzyme present and thus capillary surface area) of ACE and 5'-nucleotidase for [3H]BPAP and [14C]AMP, respectively. A significant increase in Km for both enzymes was observed at 1 h after PMA, whereas Amax was unaffected, suggesting that low-dose PMA may indeed produce endothelial cell enzyme dysfunction independent of its effect on capillary surface area. These results provide evidence of pulmonary capillary functional injury before or in the absence of structural endothelial damage.  相似文献   

4.
Given the pH dependence of enzymes in general and the potential importance of a blood and alveolar gas composition dependency on the interpretation of changes in the hydrolysis of angiotensin-converting enzyme (ACE) substrates by pulmonary endothelial ACE, we examined the influence of Pco2 and Po2 on the hydrolysis of a synthetic ACE substrate (benzoyl-phenylalanyl-alanyl-proline, BPAP) on passage through isolated rabbit lungs. Perfusate pH values of about 7.1, 7.4, and 7.9 were obtained by ventilating the lungs with gas containing different CO2 concentrations and Po2 values of approximately 110 and approximately 10 Torr were obtained by varying the concentration of O2 in the ventilating gas mixture. In the range studied neither acidosis nor alkalosis produced any significant changes in BPAP hydrolysis or in the kinetic parameters, Vmax and Km, for the hydrolysis process. On the other hand, a reduction in BPAP hydrolysis was detected when the Po2 was reduced from 110 to 10 Torr. The Vmax for BPAP hydrolysis by the lung was inversely correlated with the magnitude of the hypoxic vasoconstriction that occurred, suggesting that the reduced BPAP hydrolysis with hypoxia was due to the loss of perfused surface area due to the vasoconstriction. The results suggest that correlations between Pco2 and/or pH and whole-lung ACE activity that might occur in diseased lungs do not imply causalty. The hemodynamic consequences of changing Po2 (i.e., hypoxic vasoconstriction) may alter whole-organ ACE activity in the sense of changing the perfused surface area (i.e., the amount of ACE in contact with flowing perfusate).  相似文献   

5.
The effect of phorbol myristate acetate (PMA) on pulmonary removal of [14C]serotonin (5-[14C]HT) and metabolism of [3H]benzoyl-phenylalanyl-alanyl-proline (BPAP), a synthetic substrate for angiotensin-converting enzyme (ACE), was evaluated in isolated rabbit lungs perfused in situ with Krebs-albumin. Metabolic functions were assessed before, during, and after perfusion with 80 nM PMA (n = 11), or PMA plus 133 microM papaverine (n = 10) or PMA diluent (dimethyl sulfoxide, n = 11). Organ kinetic parameters (apparent Vmax, Km) were calculated by use of indicator-dilution techniques and by a mathematical model of whole-organ metabolism. PMA treatment resulted in a significant decline in Vmax for BPAP metabolism (from 52 +/- 4 to 30 +/- 4 nmol/s) and 5-HT removal (from 2.1 +/- 0.2 to 1.1 +/- 0.1 nmol/s). Km for BPAP was not significantly altered, whereas Km for 5-HT removal was higher after treatment (before treatment, 1.1 +/- 0.1 microM; after treatment, 2.3 +/- 0.6 microM). Coperfusion with papaverine, which attenuated the pressor response to PMA, abolished PMA-induced changes in Vmax for BPAP metabolism and in Km for 5-HT removal but left PMA-induced changes in Vmax for 5-HT removal intact. We conclude that PMA alters endothelial metabolic function by both hemodynamic and biochemical mechanisms that are independent of circulating blood cells. Pulmonary capacity for BPAP metabolism may largely reflect perfused surface area, and capacity for 5-HT removal may be more sensitive to frank endothelial cell dysfunction in this model.  相似文献   

6.
We investigated pulmonary endothelial function in vivo in 12- to 18-mo-old male Watanabe heritable hyperlipidemic (WHHL; n = 7) and age- and sex-matched New Zealand White (n = 8) rabbits. The animals were anesthetized and artificially ventilated, and the chest was opened and put in total heart bypass. The single-pass transpulmonary utilizations of the angiotensin-converting enzyme (ACE) substrate [(3)H]benzoyl-Phe-Ala-Pro (BPAP) and the 5'-nucleotidase (NCT) substrate [(14)C]AMP were estimated, and the first-order reaction parameter A(max)/K(m), where A(max) is the product of enzyme mass and the catalytic rate constant and K(m) is the Michaelis-Menten constant, was calculated. BPAP transpulmonary utilization and A(max)/K(m) were reduced in WHHL (1.69 +/- 0.16 vs. 2.9 +/- 0.44 and 599 +/- 69 vs. 987 +/- 153 ml/min in WHHL and control rabbits, respectively; P < 0.05 for both). No differences were observed in the AMP parameters. BPAP K(m) and A(max) values were estimated separately under mixed-order reaction conditions. No differences in K(m) values were found (9.79 +/- 1 vs. 9.9 +/- 1.31microM), whereas WHHL rabbit A(max) was significantly decreased (5.29 +/- 0.88 vs. 7. 93 +/- 0.8 micromol/min in WHHL and control rabbits, respectively; P < 0.05). We conclude that the observed pulmonary endothelial ACE activity reduction in WHHL rabbits appears related to a decrease in enzyme mass rather than to alterations in enzyme affinity.  相似文献   

7.
Depression of lung endothelial cell metabolic function may be an early and sensitive indicator of lung damage. When such functions are measured in vivo, substrates injected usually must be limited to "trace" doses due to the significant hemodynamic effects of high doses of substrate. Under first-order conditions (i.e., trace doses) the enzyme or transport system rate constant Vmax/Km may be calculated, but independent estimates of each variable (Vmax and Km) are not available. We therefore used multiple indicator-dilution methods and higher substrate concentrations to apply a mathematical model, based on saturable kinetics that yield independent estimates of the apparent kinetic parameters Vmax and Km for pulmonary angiotensin-converting enzyme (ACE). We used the ACE substrate, [3H]benzoyl-phenylalanyl-alanyl-proline ([3H]BPAP) and made these measurements and also estimates of serotonin [5-hydroxytryptamine (5-HT)] removal, before and after acute lung injury induced by intratracheal administration of phorbol myristate acetate (PMA). PMA significantly depressed the percent 5-HT removal (62 +/- 3 to 44 +/- 4%) and BPAP percent metabolism (74 +/- 2 to 66 +/- 2), when trace amounts of either compound were injected as a bolus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

9.
We have recently reported a decrease in cardiac output in newborn dogs during respiratory alkalosis which is independent of changes in airway pressure. The present study was designed to characterize the mechanism responsible for this reduction in cardiac output. Twelve newborn coonhounds were anaesthetized with pentobarbital, paralyzed with pancuronium and hyperventilated to an arterial carbon dioxide tension (PaCO2) of 20 torr. Subsequent changes in PaCO2 were achieved by altering the FiCO2. Measurements were made after 30 min at either 40 or 20 torr PaCO2. The sequence of PaCO2 levels was randomized. Compared to normocarbia, respiratory alkalosis resulted in significantly decreased cardiac output (279 +/- 16 to 222 +/- 10 ml/min per kg, mean +/- SEM, P less than 0.001), stroke volume (1.60 +/- 0.10 to 1.24 +/- 0.06 ml/kg; P less than 0.001), maximum left ventricular dP/dt (1629 +/- 108 to 1406 +/- 79 mmHg/s, P less than 0.01) and left ventricular end diastolic pressure (3.9 +/- 0.4 to 2.9 +/- 0.3 mmHg; P less than 0.001). The decrease in cardiac output during respiratory alkalosis is manifest through a decrease in stroke volume, which is due, at least in part, to the decrease in left ventricular end diastolic pressure. The decrease in maximum left ventricular dP/dt is likely a reflection of the decrease in preload, however, a change in myocardial contractility cannot be excluded. We speculate the decrease in filling pressure may be due to an increase in venous capacitance.  相似文献   

10.
The effect of induced metabolic acidosis (48 h of NH4Cl ingestion, BE - 10.6 +/- 1.1) and alkalosis (43 h of NaHCO3- ingestion BE 8.8 +/- 1.6) on arterial and lumber CSF pH, Pco2, and HCO3- and ventilatory responses to CO2 and to hypoxia was assessed in five healthy men. In acidosis lumbar CSF pH rose 0.033 +/- 0.02 (P less than 0.05). In alkalosis CSF pH was unchanged. Ventilatory response lines to CO2 at high O2 were displaced to the left in acidosis (9.0 +/- 1.4 Torr) and to the right in alkalosis (4.5 +/- 1.5 Torr) with no change in slope. The ventilatory response to hypoxia (delta V40) was increased in acidosis (P less than 0.05) and it was decreased in four subjects in alkalosis (P, not significant). We conclude that the altered ventilatory drives of steady-state metabolic imbalance are mediated by peripheral chemoreceptors, and in acidosis the medullary respiratory chemoreceptor drive is decreased.  相似文献   

11.
Six healthy male subjects performed three exercise tests in which the power output was increased by 100 kpm/min each minute until exhaustion. The studies were carried out after oral administration of CaCO3 (control), NH4Cl (metabolic acidosis), and NaHCO3 (metabolic alkalosis). Ventilation (VE), O2 intake (VO2), and CO2 output (VCO2) were monitored continuously. Arterialized-venous blood samples were drawn at specific times and analyzed for pH, PCO2, and lactate concentration. Resting pH (mean +/- SE) was lowest in acidosis (7.29 +/- 0.01) and highest in alkalosis (7.46 +/- 0.02). A lower peak power output (kpm/min) was achieved in acidosis (1,717 +/- 95) compared with control (1,867 +/- 120) alkalosis (1,867 +/- 125). Submaximal VO2 and VCO2 were similar, but peak VO2 and VCO2 were lower in acidosis. Plasma lactate concentration was lower at rest and during exercise in acidosis. Although lactate accumulation was reduced in acidosis, increases in hydrogen ion concentration were similar in the three conditions. We conclude that acid-base changes influence the maximum power output that may be sustained in incremental dynamic exercise and modify plasma lactate appearance, but have little effect on hydrogen ion appearance in plasma.  相似文献   

12.
The effect of postnatal development and acute alveolar hypoxia on pulmonary metabolic function was studied in conscious newborn lambs. Measurements of the ability of the lungs of these animals to metabolize [3H]benzoyl-L-phenyl-alanyl-L-alanyl-L-proline ([3H]BPAP; a synthetic substrate for angiotensin-converting enzyme, ACE) and to remove 5-hydroxy-[14C]tryptamine (5-[14C]HT) were made by modified indicator-dilution techniques during normoxic and hypoxic (fraction of inspired O2 = 0.10) conditions at 1 day, 1 wk, and 1 mo of age. Six additional sheep (8-23 wk old) were studied acutely as "adult" controls. BPAP metabolism in the 1-day-old group was 48 +/- 3% and increased slowly to 57 +/- 1% (P less than 0.05) at 1 mo of age and to 79 +/- 3% (P less than 0.01) by 23 wk of age. Pulmonary 5-[14C]HT removal was adultlike at birth (69 +/- 2%). Alveolar hypoxia significantly decreased BPAP only in the 1-day-old group (41 +/- 3%; P less than 0.05) and had no significant effect on 5-[14C]HT removal over the range of ages studied. These data demonstrate a selective and gradual postnatal development of pulmonary ACE which could be due to alterations in either the affinity or maximal capacity of pulmonary ACE, or increased endothelial cell surface area secondary to rapid growth of small blood vessels in this period. Alveolar hypoxia does not appear to closely regulate either ACE activity or 5-HT removal in conscious lambs greater than 1 day old when trace amounts of substrate are used.  相似文献   

13.
Ten free-ranging female sika deer (Cervus nippon) were captured to obtain the reference values for acid-base status and blood gas when immobilized with the combination of medetomidine and ketamine. The mean +/- SE of PaCO2, PaO2, and HCO3- were 58.1 +/- 6.1 mmHg, 58.8 +/- 6.4 mmHg, and 36.0 +/- 4.4 mmol/l, respectively. Although acidosis and alkalosis occurred in three and two animals, respectively, no serious conditions were observed. The blood values, however, suggest that some degree of hypoxemia and respiratory acidosis with metabolic alkalosis are developed. The trapped deer showed a significantly higher than normal rectal temperature reflective of exertion.  相似文献   

14.
The effect on ruminal motility of NH4- or Na-acetate and Na- or K-lactate of various pH and doses infused into the jugular vein (i.v.) or carotid artery (i.a.) was studied in sheep with ruminal fistula I.v. infusion of NH4-acetate whenever it was accompanied by a considerable increase of the blood NH4 level potently inhibited the amplitude and frequency of ruminal contractions. I. a. administration produced more rapid and more apparent responses and a slightly elevated venous ammonia concentration than did the i.v. infusion. Thus the augmented blood ammonia level not only affected the smooth muscles and peripheral nerve endings but also inhibited the vegetative centres of the central nervous system. Infusion of Na-acetate and Na- or K-lactate solutions induced compensated acidosis or alkalosis which reduced the amplitude of ruminal contractions and produced respiratory disturbances. The latter were more apparent in alkalosis. In uncompensated acidosis or alkalosis, ruminal motility was permanently inhibited or abolished. The results appear to show that in not properly fed ruminants the frequently observed and long lasting compensated acidosis or alkalosis might influence the activity of the vegetative centres thus further metabolic disturbances and impaired gastrointestinal activity might follow the shifts in acid-base equilibrium.  相似文献   

15.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of metabolic acidosis on renal haemodynamics and intrarenal blood flow distribution was studied in two groups of chronically-catheterized fetal sheep between 122 and 130 days of gestation. One group (experimental group) was studied before and during infusion of 1.1 M lactic acid, whereas the second group received on infusion of dextrose 5% (w/v) in water and served as a time-control group. Infusion of lactic acid for 2 h decreased fetal arterial pH from 7.37 +/- 0.01 to 6.95 +/- 0.02, did not change arterial blood pressure, but produced a significant decrease in renal blood flow (41 +/- 3 to 33 +/- 7 ml/min, P less than 0.05) and a significant increase in renal vascular resistance (1.42 +/- 0.13 to 1.86 +/- 0.18 mmHg/ml/min, P less than 0.05). Moreover, a significant decline in cortical blood flow was also observed in the outer portion of the renal cortex during lactic acidosis. Taken together, these results suggest that metabolic acidosis produces significant changes in fetal renal haemodynamics not associated with changes in arterial blood pressure.  相似文献   

17.
Angiotensin-converting enzyme (ACE) is present on the luminal surface of the coronary vessels, mostly on capillary endothelium. ACE is also expressed on coronary smooth muscle cells and on plaque lipid-laden macrophages. Excessive coronary circulation (CC)-ACE activity might be linked to plaque progression. Here we used the biologically inactive ACE substrate (3)H-labeled benzoyl-Phe-Ala-Pro ([(3)H]BPAP) to quantify CC-ACE activity in 10 patients by means of the indicator-dilution technique. The results were compared with atherosclerotic burden determined by coronary angiography. There was a wide range of CC-ACE activity as revealed by percent [(3)H]BPAP hydrolysis (30-74%). The atherosclerotic extent scores ranged from 0.0 to 66.97, and the plaque area scores ranged from 0 to 80 mm(2). CC-ACE activity per unit extracellular space (V(max)/K(m)V(i)), an index of metabolically active vascular surface area, was correlated with myocardial blood flow (r = 0.738; P = 0.03) but not with measures of the atherosclerotic burden. These results show that CC-ACE activity can be safely measured in humans and that it is a good marker of the vascular area of the perfused myocardium. It does not, however, reflect epicardial atherosclerotic burden, suggesting that local tissue ACE may be more important in plaque development.  相似文献   

18.
The present study evaluated whether high-frequency oscillations (HFO) with biased flow profiles applied at the airway opening are capable of altering mucus clearance. In eight anesthetized sheep, artificial mucus (100 P) was infused continuously (1 ml/min) into the left main bronchus via a cannula inserted through the dorsal wall of the left main bronchus after thoracotomy. Outcoming mucus was collected every 10 min from the end of a cuffed orotracheal tube. Animals were ventilated with a Harvard respirator at a low frequency with superimposed HFO at 14 Hz with asymmetrical waveforms generated by a digitally controlled electromagnetic piston pump (expiratory bias: peak expiratory flow 3.8 l/s, peak inspiratory flow 1.3 l/s; inspiratory bias: reverse of expiratory bias). The influence of posture and of HFO airflow bias on mucus clearance was determined. In the horizontal position, mucus clearance with expiratory biased HFO was 3.5 +/- 2 (SD) ml/10 min. Head-down tilt produced a clearance of 3.1 +/- 3 ml/10 min; addition of HFO with expiratory bias increased clearance to 11.0 +/- 2.0 ml/10 min (P less than 0.05). No clearance occurred with inspiratory biased HFO during head-down tilt. These results indicate that expiratory biased HFO at the airway opening can clear excessive airway secretions and augment clearance by postural drainage.  相似文献   

19.
Since respiratory muscles fail when blood flow is inadequate, we asked whether their blood flow would be maintained in severe hypotensive states at the expense of other vital organs (brain, heart, kidney, gut, spleen). We measured blood flow (radiolabeled microspheres) to respiratory muscles and vital organs in 11 dogs breathing against an inspiratory elastic load, first with normal blood pressure (BP) and then hypotension produced by cardiac tamponade. With the elastic load alone, there was no change in BP or cardiac output; diaphragmatic blood flow (Qdi) increased from 12.8 +/- 7.0 to 34.1 +/- 15.6 ml/100 g, and total respiratory muscle flow (QTR) increased from 56.5 +/- 19.1 to 97.4 +/- 36.5 ml/100 g, but except for the brain, there was no change in blood flow to other organs. With tamponade (mean BP = 79 +/- 16 mmHg), flow decreased to all organs, whereas Qdi (39.0 +/- 19.4) did not change. QTR decreased, but not significantly, to 88.6 +/- 49.5. With more tamponade (mean BP = 53 +/- 13 mmHg), flow to all vital organs decreased as well as QTR (57.9 +/- 47.18), but Qdi did not significantly decrease and had the same relationship to respiratory force as with normal BP. Thus, with severe inspiratory elastic loading and severe hypotension, the diaphragm and external intercostal muscles did most of the respiratory work, and their flow was maintained at the expense of other vital organs.  相似文献   

20.
The effect of changes in PCO2 upon induction of arrhythmias in cat papillary muscles was studied. The average norepinephrine (NE) dose necessary to produce spontaneous contractions in muscles stimulated at rates of 10/min was higher at high PCO2. Whereas 2 100 +/- 295 X 10(-8) mol/litre of NE was necessary during acidosis, only 824 +/- 295 X 10(-8) mol/litre was necessary to produce spontaneous contractions in alkalosis. In quiescent muscles, the necessary doses in acidosis and alkalosis were 2 209 +/- 531 X 10(-8) and 518 +/- 159 X 10(-8) mol/litre respectively. With isoproterenol 458 +/- 84 X 10(-8) mol/litre was necessary to reach the end point at high PCO2, whereas only 131 +/- 52 X 10(-8) mol/litre was required at low PCO2. The lower sensitivity to catecholamine-induced arrhythmias with hypercapnic acidosis does not appear to be related to the re-uptake of the neurotransmitter by the nerve ending since it is also present with isoproterenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号