首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
A series of novel oxazaphosphorine prodrugs of 9-(2-phosphonomethoxyethyl)adenine (PMEA, adefovir) were synthesized and their anti-hepatitis B virus (HBV) activity was evaluated in HepG2 2.2.15 cells, with adefovir dipivoxil as a reference drug. In the cell assays, compounds 7b and 7d exhibited anti-HBV activity comparable to that of adefovir dipivoxil, while compound 7c, with an IC50 value of 0.12 μM, was found to be three times more potent than the reference compound. In vitro stability studies showed that (SP,S)-7c, the diastereomer of compound 7c, was stable in human blood plasma but underwent rapid metabolism to release the parent drug PMEA in liver microsomes. The possible metabolic pathway of (SP,S)-7c in human liver microsomes was described. These findings suggest that compound (SP,S)-7c is a promising anti-HBV drug candidate for further development.  相似文献   

3.
4.
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9–34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.  相似文献   

5.
He Z  Zhang W  Chen G  Xu R  Yu XF 《Journal of molecular biology》2008,381(4):1000-1011
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus (HIV)-1 requires suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5, ElonginB, and ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. Domains in Vif that mediate APOBEC3 recognition have not been fully characterized. In the present study, we identified a VxIPLx4-5LxΦx2YWxL motif in HIV-1 Vif, which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion, and functional suppression of the A3G antiviral activity. Amino acids 52 to 72 of HIV-1 Vif (including the VxIPLx4-5LxΦx2YWxL motif) alone could mediate interaction with A3G, and this interaction was abolished by mutations of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G, yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G, suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44, which is only important for A3G suppression, the VxIPLx4-5LxΦx2YWxL motif is also required for efficient A3F interaction and suppression. On the other hand, another motif, TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition. Both the VxIPLx4-5LxΦx2YWxL and TGERxW motifs are highly conserved among HIV-1, HIV-2, and various simian immunodeficiency virus Vif proteins. Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3 proteins through conserved structural features that represent attractive targets for the development of novel inhibitors.  相似文献   

6.
Ethyl [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl]-4-hydroxy-2-oxo-3-butenoate 1 and [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid 2 were synthesized as potential HIV-1 integrase inhibitors and evaluated for their enzymatic and antiviral activity, acidic compound 2 being more potent than ester compound 1. X-ray diffraction analyses and theoretical calculations show that the diketoacid chain of compound 2 is preferentially coplanar with the quinolinone ring (dihedral angle of 0–30°). Docking studies suggest binding modes in agreement with structure–activity relationships.  相似文献   

7.
APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(−) T cells and had an IC50 as low as 8.4 μm and a TC50 of >100 μm when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 μm). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.  相似文献   

8.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

9.
A series of dihydro-pyrazolyl-thiazolinone derivatives (5a5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC50 of 0.5 μM, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent.  相似文献   

10.
Based on stereoelectronic feature analysis using density functional theory (DFT) at B3LYP/3-211G level, a series of 4-(5-nitrofuran-2-yl)prop-2-en-1-one derivatives with low LUMO energies (<?0.10 eV); concentrated over the nitro group, furan moiety and α,β-unsaturated carbonyl bridge were envisaged as potential antitubercular agents. The target compounds were prepared by condensation of 5-nitro-2-furaldehyde with various ketones under acidic condition. The compounds were evaluated for antitubercular activity against Mycobacterium tuberculosis H37Rv and their cytotoxicity in VERO cell line. Several synthesized compounds showed good antitubercular activity of <5 μM along with low cytotoxicity. In particular, compound ((E)-3-(5-nitrofuran-2-yl)-1-(4-(piperidin-1-yl)phenyl)prop-2-en-1-one) (3v) was found to be very potent (MIC: 0.19 μM) with good selectivity index (MIC90/CC50: >1800). Thus, this study shows the potential of stereoelectronic property analysis in developing improved nitroaromatics as antitubercular agents.  相似文献   

11.
In the present study, a series of new hybrid compounds containing chalcone and methanoisoindole units 7a-n ((3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione) were synthesized, characterized and investigated for their anticancer activity against C6 gliocarcinoma cell in rats, and antimicrobial activity against some human pathogen microorganisms. The compounds 7e, 7h, 7j, 7k, 7L and 7n showed very high anticancer activity with the inhibition range of 80.51–97.02% compared to 5-FU. Some of the compounds exhibited anti-microbial activity. Also, they evaluated for inhibition effects against human carbonic anhydrase I, and II isoenzymes (hCA I and II) with Ki values in the range of 405.26–635.68 pM for hCA I, and 245.40–489.60 pM for hCA II, respectively. These results demonstrated that 3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives could be used in different biomedical applications.  相似文献   

12.
The cytotoxicities against cancer cells (HL-60, HeLa) and insect cells (Sf9) of four stereoisomers of 6-(2-hydroxy-6-phenylhexyl)− 5,6-dihydro-2H-pyran-2-one (1) were evaluated, and then their structure-activity relationships examined. The 2′-dehydroxy derivative 5 of (6 R,2′R)- and (6 R,2′S)-1 showed the highest activity against HeLa cells (IC50 = 1.4 μM). To evaluate the effect of the 2′-hydroxy group of 1, 6R-and 6S-oxetane derivatives were also synthesized and their activities examined. Against HeLa and HL-60 cells, the activities of the less potent stereoisomers were enhanced 3–4-fold by the introduction of the oxetane moieties at the 2′-position. Against the insect cell line (Sf9), phenyl derivative 7 showed the highest activity with an IC50 value of 8.0 μM.  相似文献   

13.
In this study, using molecular hybridization approach, fourteen novel 2-(benzyl(4-chlorophenyl)amino)-1-(piperazin-1-yl)ethanone derivatives (7an) were designed as inhibitor of HIV-1 RT. The binding affinity of the designed compounds with HIV-1 RT as well as their drug-likeness behavior was predicted using in-silico studies. All the designed compounds were synthesized, characterized and in-vitro evaluated for HIV-1 RT inhibitory activity, in which tested compounds displayed significant to weak potency against the selected target. Moreover, best active compounds of the series, 7k and 7m inhibited the activity of RT with IC50 values 14.18 and 12.26 μM respectively. Structure Activity Relationship (SAR) studies were also performed in order to predict the influence of substitution pattern on the RT inhibitory potency. Anti-HIV-1 and cytotoxicity studies of best five RT inhibitor (7a, 7d, 7k, 7L and 7m) revealed that, except compound 7d other compounds retained significant anti-HIV-1 potency with good safety index. Best scoring pose of compound 7m was analysed in order to predict its putative binding mode with wild HIV-1 RT.  相似文献   

14.
A series of (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides have been synthesized and evaluated for their anticancer activity in human hepatocellular liver carcinoma HepG2 and breast adenocarcinoma MCF-7?cell lines. Among all the tested compounds, compound 3a, 3e and 3n displayed more activity than lead compound with IC50 value of 0.26–0.61?μM. Meanwhile, these compounds (3a, 3e and 3n) showed potent antiproliferative activity against a panel of cancer cells and the HCT-8/T multidrug resistant cell line with IC50 values in the range of 0.077– 7.44?μM. Flow cytometric analyses revealed that compound 3n induced cell cycle arrest in G2/M phases in a dose dependent manner. The compound 3n also displayed potent tubulin polymerization inhibition with an IC50 value of 0.9?µM, with ten folds more active than colchicine (IC50?=?9?μM). Molecular docking studies revealed that compound 3n efficiently interacted with the colchicine binding site of tubulin through hydrophobic, cation-π and hydrogen bond interaction. Furthermore, in silico pharmacokinetic prediction shown that these compounds have a good ADME-related physicochemical parameters. These results demonstrate that 3n exhibits potent cytotoxicity in cancer cells by targeting the colchicine binding site of tubulin and potentially acts as a therapeutic lead compound for the development of anticancer drugs.  相似文献   

15.
We report here the synthesis and preliminary evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives 6(a–k) and their precursors 5(a–k) as potential chemotherapeutic agents. In each case, the structures of the compounds were determined by FTIR, 1H NMR and mass spectroscopy. Among the synthesized molecules, methyl 1-(4-methoxyphenethyl)-2-(4-fluoro-3-nitrophenyl)-1H-benzimidazole-5-carboxylate (5a) induced maximum cell death in leukemic cells with an IC50 value of 3 μM. Using FACS analysis we show that the compound 5a induces S/G2 cell cycle arrest, which was further supported by the observed down regulation of CDK2, Cyclin B1 and PCNA. The observed downregulation of proapoptotic proteins, upregulation of antiapoptotic proteins, cleavage of PARP and elevated levels of DNA strand breaks indicated the activation of apoptosis by 5a. These results suggest that 5a could be a potent anti-leukemic agent.  相似文献   

16.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

17.
Four novel trinuclear copper(II)/nickel(II) complexes with four trianionic pentadentate ligands, N-(3-t-butylbenzoyl)-5-nitrosalicylhydrazide (H33-t-bbznshz), N-(3,5-dimethylbenzoyl)salicylhydrazide (H33,5-dmbzshz), N-(phenylacetyl)-5-bromosalicylhydrazide (H3pabshz) and N-(3-t-butylbenzoyl)salicylhydrazide (H33-t-bbzshz) have been synthesized and characterized by X-ray crystallography. These trinuclear compounds all have an M–N–N–M–N–N–M core formed by three metal ions and two ligands. The geometries of three Cu(II) ions in compound Cu3(3-t-bbznshz)2(H2O)(DMF)(py)2 · DMF (1) alternate between distorted square pyramidal and square planar, while in compound Cu3(3,5-dmbzshz)2(py)2 (2), they are all square planar. Three Ni(II) ions in compound Ni3(pabshz)2(DMF)2(py)2 (3) and Ni3(3-t-bbzshz)2(py)4 · 2H2O (4) follow square-planar/octahedral/square-planar coordination geometry. Compounds 1, 2 and 4 are bent trinuclear, with the bend angles of 156.4°, 141.49° and 127.1°, respectively, while the three nickel ions in compound 3 are strictly linear, with an angle of 180°. Studies on the trinuclear Ni(II) complexes show that the β-branched N-acylsalicylhydrazide ligands with sterically flexible Cα methylene groups are easier to yield linear trinuclear Ni(II) complexes, while α-branched N-acylsalicylhydrazides ligands tend to form bent trinuclear Ni(II) complexes. Antibacterial screening data indicate that the trinuclear Cu(II) compound 2 is more active than 1 and mononuclear Cu(II) compound, bent trinuclear Ni(II) compound 4 is more active than linear compound 3 and less active than tetranuclear nickel compound in the previous study.  相似文献   

18.
Thirteen novel seco-DCK analogs (416) with several new skeletons were designed, synthesized and screened for in vitro anti-HIV-1 activity. Among them, three compounds (5, 13, and 16) showed moderate activity, and compound 9 exhibited the best activity with an EC50 value of 0.058 μM and a therapeutic index (TI) of 1000. The activity of 9 was better than that of 4-methyl DCK (2, EC50: 0.126 μM, TI: 301.2) in the same assay. Additionally, 9 also showed antiviral activity against a multi-RT inhibitor-resistant strain (RTMDR), which is insensitive to most DCK analogs. Compared with 2, compound 9 has a less complex structure, fewer hydrogen-bond acceptors, and a reduced log P value. Therefore, it is likely to exhibit better ADME, and appears to be a promising new lead for further development as an anti-HIV candidate.  相似文献   

19.
A new series of functionalized (Z)-3-(2-oxo-2-substituted ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ones 2326, incorporating pharmaceutically privileged substructures such as cyclopropyl, naphthyl, biphenyl and cyclohexylphenyl were synthesized in excellent yields. All the synthesized compounds were screened for their in vitro antibacterial activity against gram-(+)ve and gram-(?)ve bacterial species i.e. S. griseus, S. aureus, B. subtillis and E. coli as well as in vitro antifungal activity against fungal species i.e. F. oxysporium, A. niger, P. funiculosum and T. reesei, respectively. In this study, compounds containing cyclopropyl and cyclohexylphenyl substructures were identified as promising antimicrobial agents than standard drugs, ampicillin and chloramphenicol as well as ketoconazole. SAR study illustrates that electron-withdrawing groups increases the antibacterial as well as antifungal activity of 2-oxo-benzo[1,4]oxazines and vice versa. Compounds 23e and 26e, the most active compounds of the series, displayed promising antibacterial activity than Ampicillin and Chloramphenicol. Moreover, compound 26d showed promising antifungal potency as compared to Ketoconazole. Cytotoxic studies of the active compounds i.e. 23ce, 24e, 25d and 26de found to be non-toxic in nature in 3T3 fibroblast cell lines using MTT assay.  相似文献   

20.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号