首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson’s disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD.  相似文献   

2.

l-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson’s disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.

  相似文献   

3.
The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.  相似文献   

4.
Myint AM 《The FEBS journal》2012,279(8):1375-1385
Psychiatric disorders are documented to be associated with a mild pro-inflammatory state. Pro-inflammatory mediators could activate the tryptophan breakdown and kynurenine pathway with a shift toward the neurotoxic arm where excitotoxic N-methyl-D-aspartate receptor agonist quinolinic acid is formed. An unbalanced metabolism in terms of neuroprotective and neurotoxic effects, such as reduced kynurenic acid to kynurenine ratio, has been demonstrated in the major psychiatric disorders such as unipolar depression, bipolar manic-depressive disorder and schizophrenia, and in drug-induced neuropsychiatric side effects such as interferon-α treated patients. The changes in serum or plasma are shown to be associated with central changes such as in the cerebrospinal fluid and certain brain areas. While currently available antidepressants and mood stabilizers could not efficiently improve these neurochemical changes within the same period that could induce clinical improvement, some antipsychotic treatments could reverse certain metabolic imbalances. Some of these changes were tested also in animal models. In this review the role of this unbalanced kynurenine metabolism through interactions with other neurochemicals is discussed as a major contributing pathophysiological mechanism in psychiatric disorders. Moreover, the biomarker role of kynurenine metabolites and future therapeutic opportunities are also discussed.  相似文献   

5.
Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM), may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human α-synuclein (α-syn) in the substantia nigra of an AAV-based rat genetic model of Parkinson’s disease (PD). In this model, daily exposure of both sides of the rat’s head to 808-nm near-infrared light for 28 consecutive days alleviated α-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies.  相似文献   

6.
Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation.  相似文献   

7.
8.
Iron deposition is present in main lesion areas in the brains of patients with Parkinson’s disease (PD) and an abnormal iron content may be associated with dopaminergic neuronal cytotoxicity and degeneration in the substantia nigra of the midbrain. However, the cause of iron deposition and its role in the pathological process of PD are unclear. In the present study, we investigated the effects of the nasal mucosal delivery of synthetic human α-synuclein (α-syn) preformed fibrils (PFFs) on the pathogenesis of PD in Macaca fascicularis. We detected that iron deposition was clearly increased in a time-dependent manner from 1 to 17 months in the substantia nigra and globus pallidus, highly contrasting to other brain regions after treatments with α-syn PFFs. At the cellular level, the iron deposits were specifically localized in microglia but not in dopaminergic neurons, nor in other types of glial cells in the substantia nigra, whereas the expression of transferrin (TF), TF receptor 1 (TFR1), TF receptor 2 (TFR2), and ferroportin (FPn) was increased in dopaminergic neurons. Furthermore, no clear dopaminergic neuron loss was observed in the substantia nigra, but with decreased immunoreactivity of tyrosine hydroxylase (TH) and appearance of axonal swelling in the putamen. The brain region-enriched and cell-type-dependent iron localizations indicate that the intranasal α-syn PFFs treatment-induced iron depositions in microglia in the substantia nigra may appear as an early cellular response that may initiate neuroinflammation in the dopaminergic system before cell death occurs. Our data suggest that the inhibition of iron deposition may be a potential approach for the early prevention and treatment of PD.Subject terms: Parkinson''s disease, Parkinson''s disease  相似文献   

9.
A Arregui  G R Barer  P C Emson 《Life sciences》1981,28(26):2925-2929
Exposure of 28 day old rats to moderate hypoxia (10% oxygen) for three weeks led to significant increases of immunoreactive levels of substance P and met-enkephalin in the substantia nigra but not in the corpus striatum, globus pallidus of hypothalamus.A similar group of animals exposed to hypoxia for three weeks showed decreased angiotensin converting enzyme activity in the corpus striatum and substantia nigra and decreased GABA levels in the substantia nigra. However, fifteen days after recovery from hypoxia these changes were no longer apparent.Exposure to chronic, moderate hypoxia can affect levels of putative neurotransmitters in the brain, and based on the present findings the substantia nigra or the striato-nigral pathways appear to be particularly vulnerable.  相似文献   

10.
Systemic administration of a Synthetic Proteasome Inihibitor (PSI) in rats has been described as able to provide a model of Parkinson’s disease (PD), characterized by behavioral and biochemical modifications, including loss of dopaminergic neurons in the substantia nigra (SN), as assessed by post-mortem studies. With the present study we aimed to assess in-vivo by Magnetic Resonance (MR) possible morphological and metabolic changes in the nigro-striatal pathway of PSI-treated rats. 10 animals were subcutaneously injected with PSI 6.0 mg/kg dissolved in DMSO 100%. Injections were made thrice weekly over the course of two weeks. 5 more animals injected with DMSO 100% with the same protocol served as controls. The animals underwent MR sessions before and at four weeks after the end of treatment with either PSI or vehicle. MR Imaging was performed to measure SN volume and Proton MR Spectroscopy (1H-MRS) was performed to measure metabolites changes at the striatum. Animals were also assessed for motor function at baseline and at 4 and 6 weeks after treatment. Dopamine and dopamine metabolite levels were measured in the striata at 6 weeks after treatment. PSI-treated animals showed volumetric reduction of the SN (p<0.02) at 4 weeks after treatment as compared to baseline. Immunofluorescence analysis confirmed MRI changes in SN showing a reduction of tyrosine hydroxylase expression as compared to neuron-specific enolase expression. A reduction of N-acetyl-aspartate/total creatine ratio (p = 0.05) and an increase of glutamate-glutamine-γ amminobutirrate/total creatine were found at spectroscopy (p = 0.03). At 6 weeks after treatment, PSI-treated rats also showed motor dysfunction compared to baseline (p = 0.02), accompanied by dopamine level reduction in the striatum (p = 0.02). Treatment with PSI produced morphological and metabolic modifications of the nigro-striatal pathway, accompanied by motor dysfunction. MR demonstrated to be a powerful mean to assess in-vivo the nigro-striatal pathway morphology and metabolism in the PSI-based PD animal model.  相似文献   

11.
Parkinson’s disease (PD), characterized by loss of dopaminergic neurons in the substantia nigra, is a neurodegenerative disorder of central nervous system. The present study was designed to investigate the therapeutic effect of ACS84, a hydrogen sulfide-releasing-L-Dopa derivative compound, in a 6-hydroxydopamine (6-OHDA)-induced PD model. ACS84 protected the SH-SY5Y cells against 6-OHDA-induced cell injury and oxidative stress. The protective effect resulted from stimulation of Nrf-2 nuclear translocation and promotion of anti-oxidant enzymes expression. In the 6-OHDA-induced PD rat model, intragastric administration of ACS84 relieved the movement dysfunction of the model animals. Immunofluorescence staining and High-performance liquid chromatography analysis showed that ACS84 alleviated the loss of tyrosine-hydroxylase positive neurons in the substantia nigra and the declined dopamine concentration in the injured striatums of the 6-OHDA-induced PD model. Moreover, ACS84 reversed the elevated malondialdehyde level and the decreased glutathione level in vivo. In conclusion, ACS84 may prevent neurodegeneration via the anti-oxidative mechanism and has potential therapeutic values for Parkinson’s disease.  相似文献   

12.
Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington's disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted?at?two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders.  相似文献   

13.
Neuromelanins (NMs) are neuronal pigments of melanic-lipidic type which accumulate during aging. They are involved in protective and degenerative mechanisms depending on the cellular context, however their structures are still poorly understood. NMs from nine human brain areas were analyzed in detail. Elemental analysis led to identification of three types of NM, while infrared spectroscopy showed that NMs from neurons of substantia nigra and locus coeruleus, which selectively degenerate in Parkinson’s disease, have similar structure but different from NMs from brain regions not targeted by the disease. Synthetic melanins containing Fe and bovine serum albumin were prepared to model the natural product and help clarifying the structure of NMs. Extensive nuclear magnetic resonance spectroscopy studies showed the presence of dolichols both in the soluble and insoluble parts of NM. Diffusion measurements demonstrated that the dimethyl sulfoxide soluble components consist of oligomeric precursors with MWs in the range 1.4–52 kDa, while the insoluble part contains polymers of larger size but with a similar composition. These data suggest that the selective vulnerability of neurons of substantia nigra and locus coeruleus in Parkinson’s disease might depend on the structure of the pigment. Moreover, they allow to propose a pathway for NM biosynthesis in human brain.  相似文献   

14.
To assess the role of the kynurenine pathway in the pathology of Alzheimer''s disease (AD), the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO), and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.  相似文献   

15.
The mechanisms responsible for post-resuscitation myocardial and cerebral dysfunction are not well understood, especially in the early post-resuscitation phases. In this investigation, we first adopted unbiased mass spectrometry-based metabolomic profiling to identify perturbations in circulating metabolites in a rat model of cardiac arrest and cardiopulmonary resuscitation. Our findings strongly indicated early alterations in a major route of the tryptophan catabolism, namely the kynurenines pathway, after resuscitation. Specific metabolites involved in the tryptophan catabolism were quantified absolutely using liquid chromatography-multiple reaction monitoring-mass spectrometry. Tryptophan plasma concentration fell significantly very early in the post-resuscitation phase, while its metabolites, l-kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and 5-hydroxyindoleacetic acid, rose significantly. Changes in their concentration reflected changes in rat post-resuscitation myocardial dysfunction. Elevated plasma level of kynurenic acid, 3-hydroxyanthranilic acid were associated with significant decrease in ejection fraction and stroke volume. It is well known that kynurenines pathway is involved in the pathogenesis of numerous central nervous system disorders. By implication, altered levels of tryptophan metabolites in the early post resuscitation phase might contribute to the degree of cognitive recovery. Our results suggest that kynurenine pathway is activated early following resuscitation from cardiac arrest and might account for the severity of post-resuscitation syndrome. Our explorative investigation indicate that metabolomics can help to clarify unexplored biochemical pathways in cardiopulmonary resuscitation.  相似文献   

16.
Quinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as in cellular models of Alzheimer's disease and related disorders. Furthermore, intrastriatal inoculation of mice with QA results in increased levels of phosphorylated α-synuclein and neurodegenerative pathological and behavioral characteristics. However, the cellular and molecular mechanisms underlying the involvement of QA accumulation in protein aggregation and neurodegeneration remain elusive. We recently established that self-assembled ordered structures are formed by various metabolites and hypothesized that these “metabolite amyloids” may seed amyloidogenic proteins. Here we demonstrate the formation of QA amyloid-like fibrillar assemblies and seeding of α-synuclein aggregation by these nanostructures both in vitro and in cell culture. Notably, α-synuclein aggregation kinetics was accelerated by an order of magnitude. Additional amyloid-like properties of QA assemblies were demonstrated using thioflavin T assay, powder X-ray diffraction and cell apoptosis analysis. Moreover, fluorescently labeled QA assemblies were internalized by neuronal cells and co-localized with α-synuclein aggregates. In addition, we observed cell-to-cell propagation of fluorescently labeled QA assemblies in a co-culture of treated and untreated cells. Our findings suggest that excess QA levels, due to mutations in the kynurenine pathway, for example, may lead to the formation of metabolite assemblies that seed α-synuclein aggregation, resulting in neuronal toxicity and induction of Parkinson's disease.  相似文献   

17.
The immune system has been recognized as a potential contributor to psychiatric disorders. In animals, lipopolysaccharide (LPS) is used to induce inflammation and behaviors analogous to some of the symptoms in these disorders. Recent data indicate that the kynurenine pathway contributes to LPS-induced aberrant behaviors. However, data are inconclusive regarding optimal LPS dose and treatment strategy. Here, we therefore aimed to evaluate the effects of single versus repeated administration of LPS on the kynurenine pathway. Adult C57BL6 mice were given 0.83 mg/kg LPS as a single or a repeated injection (LPS + LPS) and sacrificed after 24, 48, 72, or 120 h. Mice receiving LPS + LPS had significantly elevated brain kynurenine levels at 24 and 48 h, and elevated serum kynurenine at 24, 48 and 72 h. Brain kynurenic acid and quinolinic acid were significantly increased at 24 and 48 h in mice receiving LPS + LPS, whereas serum kynurenic acid levels were significantly decreased at 24 h. The increase of brain kynurenic acid by LPS + LPS was likely unrelated to the higher total dose as a separate group of mice receiving 1.66 mg/kg LPS as single injection 24 h prior to sacrifice did not show increased brain kynurenic acid. Serum quinolinic acid levels were not affected by LPS + LPS compared to vehicle. Animals given repeated injections of LPS showed a more robust induction of the kynurenine pathway in contrast to animals receiving a single injection. These results may be valuable in light of data showing the importance of the kynurenine pathway in psychiatric disorders.  相似文献   

18.
The microinfusion of low doses of apomorphine into the striatum of anesthetized rats depressed the electrical activity of the neurons of the substantia nigra pars compacta while the infusion of bromocriptine had an excitatory or inhibitory effect. These data suggest that:1) the action of the two dopamine agonists on the striato-nigral pathway is different; 2) the striatum might contain dopaminergic receptors located on cells projecting to the substantia nigra with different roles in the feedback regulation of the latter; 3) the inhibitory action of systemically injected apomorphine is not simply due to a stimulation of dopamine “autoreceptors” but also to an action mediated by fibers descending from the striatum to the substantia nigra.  相似文献   

19.
J L Venero  M Santiago  A Machado  J Cano 《Life sciences》1989,45(14):1277-1283
Changes in biogenic amine content in the substantia nigra and in both forms of monoamine oxidase in substantia nigra and striatum of the rat during postnatal development (15-180 days) have been studied. Dopamine and serotonin had the same levels at day 15, however, each monoamine showed a different developmental profile. Dopamine levels and their metabolites (except 3-methoxytyramine) decreased during postnatal development. Serotonin levels and their main metabolite, 5-hydroxyindolacetic acid, underwent an increase during all stages studied. There were no statistically significant changes in noradrenaline levels until day 180 when they increased with respect to day 15. The highest activity of the monoamine oxidase-A in substantia nigra coincided with the highest 5-hydroxyindolacetic acid:serotonin ratio. Monoamine oxidase-A in the striatum did not change contrary to that which happened in substantia nigra. The monoamine oxidase-B:monoamine oxidase-A ratio increased during development both in the substantia nigra and the striatum. The significance of these changes is discussed.  相似文献   

20.
Protocatechuic aldehyde (PAL) has been reported to bind to DJ-1, a key protein involved in Parkinson’s disease (PD), and exerts potential neuroprotective effects via DJ-1 in SH-SY5Y cells. In this study, we investigated the neuroprotective pharmacological effects of PAL against neurotoxin-induced cell and animal models of PD. In cellular models of PD, PAL markedly increased cell viability rates, mitochondrial oxidation-reduction activity and mitochondrial membrane potential, and reduced intracellular ROS levels to prevent neurotoxicity in PC12 cells. In animal models of PD, PAL reduced the apomorphine injection, caused turning in 6-OHDA treated rats, and increased the motor coordination and stride decreases in MPTP treated mice. Meanwhile, in an MPTP mouse model, PAL prevented a decrease of the contents of dopamine (DA) and its metabolites in the striatum and TH-positive dopaminergic neuron loss in the substantia nigra (SN). In addition, PAL increased the protein expression of DJ-1 and reduced the level of α-synuclein in the SN of MPTP lesioned mice. PAL also increased the spine density in hippocampal CA1 neurons. The current study demonstrates that PAL can efficiently protect dopaminergic neurons against neurotoxin injury in vitro and in vivo, and that the potential mechanisms may be related to its effects in increasing DJ-1, decreasing α-synuclein and its growth-promoting effect on spine density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号