首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We implemented a temporally dynamic approach to the cladistic biogeographic analysis of 13 areas of North American deserts and several plant and animal taxa. We undertook a parsimony analysis of paralogy‐free subtrees based on 43 phylogenetic hypotheses of arthropod, vertebrate and plant taxa, assigning their nodes to three different time slices based on their estimated minimum ages: Early‐Mid‐Miocene (23?7 Ma), Late Miocene/Pliocene (6.9?2.5 Ma) and Pleistocene (2.4?0.011 Ma). The analyses resulted in three general area cladograms, one for each time slice, showing different area relationships. They allowed us to detect influences of different geological and palaeoclimatological events of the Early‐Mid‐Miocene, Late Miocene/Pliocene and Pleistocene that might have affected the diversification of the desert biota. Several diversification events in the deserts of North America might have been driven by Neogene uplift, marine incursion and the opening of the California Gulf during the Miocene–Pliocene, whereas climatic fluctuations had the highest impact during the Pleistocene.  相似文献   

2.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

3.
Miocene hominoid biogeography: pulses of dispersal and differentiation   总被引:2,自引:0,他引:2  
Aim  To test the hypothesis that the ancestor of the hominines (African apes and humans) had an African origin by comparing the historical biogeographical patterns of hominoids with those of two other large land mammal clades, namely the hyaenids and proboscideans.
Location  Global, primarily the Old World over the last 25 Myr (Miocene to present).
Methods  Creation of a general area cladogram using pact , a new method for generating area cladograms, and interpretation of general and clade-specific speciation events involving hominoids, proboscideans and hyaenids.
Results  The analysis of the areas using pact reveals both general patterns and clade-specific exceptions to these patterns. All three groups share a general episode of species formation in Africa in the early Miocene, followed by 'out of Africa' expansion into Europe, Asia and North America, and a second general episode of species formation in Asia in the mid-Miocene, followed by 'out of Asia' expansion into Africa, Europe and North America. Finally, there were two additional 'out of Africa' events during the late Miocene and into the Pliocene, the last one setting the stage for the emergence and spread of Homo . In addition to these shared episodes of vicariance and dispersal, each group exhibits clade-specific within-area and peripatric speciation events.
Main conclusions  The complex history of dispersal and speciation over large areas exhibited by hominoids is part of a more general history of biotic diversification by taxon pulses. Refining this scenario will require the integration of additional clades from the same areas and times, as well as more detailed palaeoclimatological, palaeoenvironmental and geological evidence.  相似文献   

4.
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed‐clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline‐plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies.  相似文献   

5.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

6.
Aim Parrots are thought to have originated on Gondwana during the Cretaceous. The initial split within crown group parrots separated the New Zealand taxa from the remaining extant species and was considered to coincide with the separation of New Zealand from Gondwana 82–85 Ma, assuming that the diversification of parrots was mainly shaped by vicariance. However, the distribution patterns of several extant parrot groups cannot be explained without invoking transoceanic dispersal, challenging this assumption. Here, we present a temporal and spatial framework for the diversification of parrots using external avian fossils as calibration points in order to evaluate the relative importance of the influences of past climate change, plate tectonics and ecological opportunity. Location Australasian, African, Indo‐Malayan and Neotropical regions. Methods Phylogenetic relationships were investigated using partial sequences of the nuclear genes c‐mos, RAG‐1 and Zenk of 75 parrot and 21 other avian taxa. Divergence dates and confidence intervals were estimated using a Bayesian relaxed molecular clock approach. Biogeographic patterns were evaluated taking temporal connectivity between areas into account. We tested whether diversification remained constant over time and if some parrot groups were more species‐rich than expected given their age. Results Crown group diversification of parrots started only about 58 Ma, in the Palaeogene, significantly later than previously thought. The Australasian lories and possibly also the Neotropical Arini were found to be unexpectedly species‐rich. Diversification rates probably increased around the Eocene/Oligocene boundary and in the middle Miocene, during two periods of major global climatic aberrations characterized by global cooling. Main conclusions The diversification of parrots was shaped by climatic and geological events as well as by key innovations. Initial vicariance events caused by continental break‐up were followed by transoceanic dispersal and local radiations. Habitat shifts caused by climate change and mountain orogenesis may have acted as a catalyst to the diversification by providing new ecological opportunities and challenges as well as by causing isolation as a result of habitat fragmentation. The lories constitute the only highly nectarivorous parrot clade, and their diet shift, associated with morphological innovation, may have acted as an evolutionary key innovation, allowing them to explore underutilized niches and promoting their diversification.  相似文献   

7.
Species in the genus Tangara are distributed throughout the New World tropics and vary in their morphology, behavior, and ecology. We used data from the cytochrome b and ND 2 genes to provide the first phylogenetic perspective on the evolution of this diversity. Reconstructions based on parsimony, maximum likelihood, and Bayesian approaches were largely congruent. The genus is monophyletic and consists of two main clades. Within these clades, DNA sequence data confirm the monophyly of most previously recognized species groups within Tangara, indicating general concordance between molecular data and impressions based on geographic distribution, morphology, and behavior. Within some currently recognized species, levels of DNA sequence variation are larger than expected, suggesting multiple taxa may be involved. In contrast, some currently recognized species are only weakly differentiated from their sister species. Biogeographic analyses indicate that many early speciation events occurred in the Andes. More recently, dispersal events followed by subsequent speciation have occurred in other geographic areas of the Neotropics. Assuming a molecular clock, most speciation events occurred well before Pleistocene climatic cycles. The time frame of Tangara speciation corresponds more closely to a period of continued uplift in the Andes during the late Miocene and Pliocene.  相似文献   

8.
The evolution of fungus-growing termites is supposed to have started in the African rain forests with multiple invasions of semi-arid habitats as well as multiple invasions of the Oriental region. We used sequences of the mitochondrial COII gene and Bayesian dating to investigate the time frame of the evolution of Macrotermes, an important genus of fungus-growing termites. We found that the genus Macrotermes consists of at least 6 distantly related clades. Furthermore, the COII sequences suggested some cryptic diversity within the analysed African Macrotermes species. The dates calculated with the COII data using a fossilized termite mound to calibrate the clock were in good agreement with dates calculated with COI sequences using the split between Locusta and Chortippus as calibration point which supports the consistency of the calibration points. The clades from the Oriental region dated back to the early Tertiary. These estimates of divergence times suggested that Macrotermes invaded Asia during periods with humid climates. For Africa, many speciation events predated the Pleistocene and fall in range of 6-23 million years ago. These estimates suggest that savannah-adapted African clades radiated with the spread of the semi-arid ecosystems during the Miocene. Apparently, events during the Pleistocene were of little importance for speciation within the genus Macrotermes. However, further investigations are necessary to increase the number of taxa for phylogenetic analysis.  相似文献   

9.
Aim To infer the phylogenetic relationships and biogeography of Hydromantes, with special emphasis on the European taxa. In particular, we aimed to test: (1) the monophyly of the European species and current views on their interrelationships; and (2) previously proposed timings of the separation of European and American Hydromantes, and of biogeographically important events within Europe. Location California and the Western Mediterranean Basin, specifically south‐east France, Italy, and the island of Sardinia. Methods Partial sequences of mitochondrial genes (cytochrome b and 12S rRNA) were obtained from 45 specimens of Hydromantes, including all European extant species and subspecies, and two species from California. In addition, a fragment of the mitochondrial 16S rRNA gene was amplified for 16 specimens. Data sets were aligned using Clustal X, and well‐supported phylogenetic trees were produced using maximum‐likelihood, Bayesian and maximum‐parsimony methods. Estimates of divergence times were obtained with the program r8s , the molecular clock being calibrated using the opening of the Strait of Gibraltar, the final event in the Messinian Salinity Crisis of 5.3 Ma. Results Separation between the American and European clades occurred approximately 13.5 Ma, most probably before or after westward dispersal across the Bering Land Bridge. In Europe, divergence started in the late Miocene, when Hydromantes (A.) genei separated from other members of the genus 9 Ma and colonized south‐west Sardinia. Movement between the European mainland and Sardinia, by a member of the subgenus Speleomantes, occurred in the Messinian Salinity Crisis, after the Mediterranean Basin desiccated almost completely 5.96 Ma. Subsequent widespread aridification fragmented the geographical ranges of Hydromantes, which live in cool and humid conditions, resulting in the origin of the six species in the subgenus Speleomantes. In contrast, a second period of diversification, in continental Europe 2–1.3 Ma, was probably caused by very cold interludes during the climatic oscillations that characterized the Pleistocene. Main conclusions The molecular clock used here indicates that the separation of Californian and European Hydromantes occurred more recently than previously believed, and the same is true of some subsequent phylogenetic divergences within Europe. Estimated dates for these divergence events are consistent with known geophysical and climatic events that could have caused or facilitated them.  相似文献   

10.
Aim The Southern Ocean is split into several biogeographical provinces between convergence zones that separate watermasses of different temperatures. Recent molecular phylogenies have uncovered a strong phylogeographic structure among rockhopper penguin populations, Eudyptes chrysocome sensu lato, from different biogeographical provinces. These studies suggested a reclassification as three species in two major clades, corresponding, respectively, to warm, subtropical and cold sub‐Antarctic watermasses rather than to geographic proximity. Such a phylogeographic pattern, also observed in plants, invertebrates and fishes of the Southern Ocean, suggests that past changes in the positions of watermasses may have affected the evolutionary history of penguins. We calculated divergence times among various rockhopper penguin clades and calibrated these data with palaeomagmatic and palaeoceanographic events to generate a speciation chronology in rockhopper penguins. Location Southern Ocean. Methods Divergence times between populations were calculated using five distinct mitochondrial DNA loci, and assuming a molecular clock model as implemented in mdiv . The molecular evolution rate of rockhopper penguins was calibrated using the radiochronological age of St Paul Island and Amsterdam Island in the southern Indian Ocean. Separations within other clades were correlated with palaeoceanographic data using this calibrated rate. Results The split between the Atlantic and Indian populations of rockhopper penguins was dated as 0.25 Ma, using the date of emergence of St Paul and Amsterdam islands, and the divergence between sub‐Antarctic and subtropical rockhopper penguins was dated as c. 0.9 Ma (i.e. during the mid‐Pleistocene transition, a major change in the Earth’s climate cycles). Main conclusions The mid‐Pleistocene transition is known to have caused a major southward shift in watermasses in the Southern Ocean, thus changing the environment around the northernmost rockhopper penguin breeding sites. This ecological isolation of northernmost populations may have caused vicariant speciation, splitting the species into two major clades. After the emergence of St Paul and Amsterdam islands in the subtropical Indian Ocean 0.25 Ma, these islands were colonized by penguins from the subtropical Atlantic, 6000 km away, rather than by penguins from the sub‐Antarctic Indian Ocean, 5000 km closer.  相似文献   

11.
Aim To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep‐time evolutionary time‐scale. Location Western Europe: 626 fossil‐bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour‐joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6–4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long‐term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale.  相似文献   

12.
Mechanisms of speciation of flightless grasshoppers in mountainous and coastal East Africa are inferred considering (i) phylogenies estimated with a combination of molecular markers (16S rRNA locus, COI and H3), (ii) ecological data and (iii) the geographic distribution of Parepistaurus species. The study suggests that coastal taxa of Parepistaurus belong to ancestral lineages from which evolved the high diversity of species found in the Eastern Arc Mountains of Tanzania and Kenya, which are geologically ancient mountain formations. Network analyses and a molecular clock approach, calibrated with the geological age of the volcanoes, suggested that speciation was boosted by climatic fluctuations affecting large areas of East Africa. With the aridification beginning 2.8 Ma, forest taxa were isolated due to forest fragmentation and populations were separated by extended grasslands, which are avoided by Parepistaurus species. However, a humid period between 2.7 and 2.5 Ma triggered a spread of coastal taxa along the Eastern Arc Mountains. Forests expanded again and riparian vegetation along rivers draining into the Indian Ocean probably served as corridors for the dispersal of coastal taxa to the hinterland. The inland volcanoes such as Mount Kilimanjaro are therefore good time markers because their geological age is known, limiting the available time for speciation processes of mountainous Parepistaurus in the area to a maximum of about 1–2 Ma. A third humid but cold period between 1.1 and 0.9 Ma probably further boosted the spread of several flightless and montane‐adapted Orthoptera taxa.  相似文献   

13.
Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break‐ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node‐based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well‐known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non‐uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total‐group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of semi‐independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows that long‐distance dispersals and regional extinctions can confound and erode pre‐existing vicariance‐driven patterns. It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took place during the Late Cretaceous and Cenozoic. Although long‐distance dispersals likely shaped the distributions of several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological dynamics are still unclear and require further investigation.  相似文献   

14.
Oscillating glacial cycles over the past 2.4 million years are proposed to have had a major impact on the diversity of contemporary species communities. We used mitochondrial and nuclear DNA sequence data to infer phylogenetic relationships within Western Palearctic brown frogs and to test the influence of Pliocene and Pleistocene climatic changes on their evolution. We sequenced 1976bp of the mitochondrial genes 16S rRNA and cytochrome b and of the nuclear rhodopsin gene for all current species and subspecies. Based on an established allozyme clock for Western Palearctic water frogs and substitution rate constancy among water frogs and brown frogs, we calibrated a molecular clock for 1425bp of the 16S and rhodopsin genes. We applied this clock to date speciation events among brown frogs. Western Palearctic brown frogs underwent a basal post-Messinian radiation about 4 million years ago (mya) into five major clades: three monotypic lineages (Rana dalmatina, Rana latastei, Rana graeca), an Anatolian lineage, and a lineage comprising Rana italica, Rana arvalis, and all Iberian taxa. Polytypic lineages radiated further in concordance with the onset of climatic oscillations ca. 3.2, 2.0, and 1.0-0.6 mya, respectively. The dated fossil record corroborates our paleobiogeographic scenario. We conclude that drastic climatic changes followed by successive temperature oscillations "trapped" most brown frog species in their southern European glacial refugia with enough time to speciate. Substantial dispersal was only possible during extensive interglacial periods of a constant subtropical climate.  相似文献   

15.
Ray‐finned fishes (Actinopterygii) dominate modern aquatic ecosystems and are represented by over 32000 extant species. The vast majority of living actinopterygians are teleosts; their success is often attributed to a genome duplication event or morphological novelties. The remainder are ‘living fossils’ belonging to a few depauperate lineages with long‐retained ecomorphologies: Polypteriformes (bichirs), Holostei (bowfin and gar) and Chondrostei (paddlefish and sturgeon). Despite over a century of systematic work, the circumstances surrounding the origins of these clades, as well as their basic interrelationships and diagnoses, have been largely mired in uncertainty. Here, I review the systematics and characteristics of these major ray‐finned fish clades, and the early fossil record of Actinopterygii, in order to gauge the sources of doubt. Recent relaxed molecular clock studies have pushed the origins of actinopterygian crown clades to the mid‐late Palaeozoic [Silurian–Carboniferous; 420 to 298 million years ago (Ma)], despite a diagnostic body fossil record extending only to the later Mesozoic (251 to 66 Ma). This disjunct, recently termed the ‘Teleost Gap’ (although it affects all crown lineages), is based partly on calibrations from potential Palaeozoic stem‐taxa and thus has been attributed to poor fossil sampling. Actinopterygian fossils of appropriate ages are usually abundant and well preserved, yet long‐term neglect of this record in both taxonomic and systematic studies has exacerbated the gaps and obscured potential synapomorphies. At the moment, it is possible that later Palaeozoic‐age teleost, holostean, chondrostean and/or polypteriform crown taxa sit unrecognized in museum drawers. However, it is equally likely that the ‘Teleost Gap’ is an artifact of incorrect attributions to extant lineages, overwriting both a post‐Palaeozoic crown actinopterygian radiation and the ecomorphological diversity of stem‐taxa.  相似文献   

16.
Synodontis catfish are a species‐rich, tropical pan‐African genus that predominately occur in fluviatile environments, but which also form a small radiation within Lake Tanganyika (LT). Here we estimate Synodontis relationships, based on mitochondrial and nuclear DNA, greatly expanding previous sampling. Data were analysed using different methods of phylogenetic inference: Bayesian (also testing compositional heterogeneity), likelihood and parsimony, in order to investigate biogeographic history and the extent of intralacustrine speciation within this group. Bayesian‐relaxed clock analyses were used to estimate timings of radiations. Our analyses reveal a single origin of the LT flock with the inclusion of the nonendemic S. victoriae, and that these taxa evolved relatively recently (5.5 Ma), considerably later than the formation of LT (9–12 Ma). Two internal endemic clades diversified at a similar time (2–2.5 Ma), corresponding to a period of climate change, when lake levels dropped. We find evidence for a further species flock, composed of riverine southern African taxa, the diversification of which is very rapid, 0.8 Ma (95% HPD: 0.4–1.5) and infer a similar scenario for the diversification of this flock to southern African serrachromine cichlids in that they radiated in the now extinct lake Makgadikgadi. We also reveal that the biogeographic history of Synodontis catfish is more complex than previously thought, with nonmonophyletic geographic species groupings.  相似文献   

17.
Heads, M. Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. —Zoologica Scripta, 39, 107–127. The ages of the oldest fossils suggest an origin for primates in the Paleocene (~56 Ma). Fossil‐calibrated molecular clock dates give Cretaceous dates (~80–116 Ma). Both these estimates are minimum dates although they are often ‘transmogrified’ and treated as maximum or absolute dates. Oldest fossils can underestimate ages by tens of millions of years and instead of calibrating the time‐course of evolution with a scanty fossil record, the geographical boundaries of the main molecular clades of primates are calibrated here with radiometrically dated tectonic events. This indicates that primates originated when a globally widespread ancestor (early Archonta) differentiated into a northern group (Plesiadapiformes, extinct), a southern group (Primates), and two south‐east Asian groups (Dermoptera and Scandentia). The division occurred with the breakup of Pangea in the Early Jurassic and the opening of the central Atlantic (~185 Ma). Within primates, the strepsirrhines and haplorhines diverged with volcanism and buckling on the Lebombo Monocline, a volcanic rifted margin in south‐east Africa (Early Jurassic, ~180 Ma). Within strepsirrhines, lorises and galagos (Africa and Asia) and lemurs (Madagascar) diverged with the formation of the Mozambique Channel (Middle Jurassic, ~160 Ma). Within haplorhines, Old World monkeys and New World monkeys diverged with the opening of the Atlantic (Early Cretaceous, ~130 Ma). The main aspects of primate distribution are interpreted as the result of plate tectonics, phylogeny and vicariance, with some subsequent range expansion leading to secondary overlap. Long‐distance, trans‐oceanic dispersal events are not necessary. The primate ancestral complex was already widespread globally when sea‐floor spreading, strike‐slip rifting and orogeny fractured and deformed distributions through the Jurassic and Cretaceous, leading to the origin of the modern clades. The model suggests that the topology of the phylogenetic tree reflects a sequence of differentiation in a widespread ancestor rather than a series of dispersal events.  相似文献   

18.
Aim The main Japanese islands are land‐bridge islands divided by the biogeographic division Blakiston’s Line and represent two natural laboratories for studying land‐bridge diversification. Colonization of the current mammal fauna has been dated to the middle to late Pleistocene using fossil evidence. The purpose of this paper is to apply a molecular clock to the genetic divergences between Japanese mammalian taxa and their sister mainland taxa to test the late Pleistocene land‐bridge colonization hypothesis. Location The main Japanese islands (Kyushu, Shikoku, Honshu and Hokkaido). Methods I used mitochondrial DNA (cytochrome b) and a species tree approach to estimate the divergence times of 24 Japanese non‐volant terrestrial mammal taxa and their mainland sister taxa using the program *beast . I then tested for evidence of non‐simultaneous divergence among these taxon‐pairs by controlling for expected coalescent stochasticity using the program Ms Bayes . Results Divergence events between taxa on Japan and their mainland sister taxa were significantly older than expected under the current paradigm, which is based on fossil data. Consistent with the land‐bridge colonization hypothesis, there was evidence of multiple divergence events. Main conclusions These results implicate a colonization timeframe that is older than posited by the current paradigm based on fossil evidence. However, these results are still consistent with the land‐bridge colonization hypothesis. Multiple periods of land‐bridge connectivity may account for the current mammalian fauna in Japan. In addition, half of the divergence time estimates in the Honshu–Shikoku–Kyushu region were clumped around 2.4 Ma, which might suggest a dramatic interchange period, concordant with a period of significant global cooling, when the first land bridge may have connected Japan to the mainland.  相似文献   

19.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

20.
Most examples of intercontinental dispersal events after the Miocene contact between Africa and Asia involve mammal lineages. Among amphibians, a number of probably related groups are known from both continents, but their phylogenies are so far largely unresolved. To test the hypothesis of Miocene dispersal against a Mesozoic vicariance scenario in the context of Gondwana fragmentation, we analyzed fragments of the mitochondrial 16S rRNA gene (572 bp) in 40 specimens of 34 species of the anuran family Ranidae. Results corroborated the monophyly of tiger frogs (genus Hoplobatrachus), a genus with representatives in Africa and Asia. The African H. occipitalis was the sister group of the Asian H. crassus, H. chinensis, and H. tigerinus. Hoplobatrachus was placed in a clade also containing the Asian genera Euphlyctis and Nannophrys. Combined analysis of sequences of 16S and 12S rRNA genes (total 903 bp) in a reduced set of taxa corroborated the monophyly of the lineage containing these three genera and identified the Asian genus Fejervarya as its possible sister group. The fact that the African H. occipitalis is nested within an otherwise exclusively Asian clade indicates its probable Oriental origin. Rough molecular clock estimates did not contradict the assumption that the dispersal event took place in the Miocene. Our data further identified a similar molecular divergence between closely related Asian and African species of Rana (belonging to the section Hylarana), indicating that Neogene intercontinental dispersal also may have taken place in this group and possibly in rhacophorid treefrogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号