首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internal anatomy of the anterior alimentary canal of the whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B-biotype, was examined by light, scanning, and transmission electron microscopy to elucidate the location and number of precibarial and cibarial gustatory sensilla. Elucidation of the epipharyngeal organ complex within the precibarium revealed 10 precibarial sensilla located proximal to where the paired maxillary stylets diverge on their retraction. The sensory organ complex within the cibarium consists of 8 sensilla, 6 on the epipharyngeal sclerite with 2 found within the hypopharyngeal sclerite. Fine structure investigation revealed the individual neurons to terminate at sensillar pores, which allow direct contact with passing fluids, thus supporting a chemosensory function. Ultrastructure of the neurons is similar to that of precibarial and cibarial gustatory chemosensilla found in other piercing-sucking insects. Their importance to whitefly feeding is discussed.  相似文献   

2.
Summary The thermo-/hygrosensitive sensilla styloconica of the silk moth Bombyx mori were studied using cryofixation and freez-substitution. These sensilla are characterized by a short poreless cuticular peg, which is double-walled in its distal part. The central lumen is innervated by the unbranched outer dendritic segments of the two presumed hygroreceptor cells. The presumed thermoreceptor cell displays lamellae below the peg base. Within the peg lumen, the dendrites are surrounded by the peridendritic dense coat and the lowdensity matrix. Below the peg base, these structures continue as the dendrite sheath, which is separated from the outer sensillum-lymph space by a layer of the trichogen cell. The central lumen, therefore, is only connected with the inner sensillum-lymph space, but the appearance of the low-density matrix, within the peg, differs from that of the sensillum lymph below the peg. In moist-adapted (24 h) sensilla, the two hygroreceptor dendrites invade the peg for three quarters and one half of its length, respectively, and fill the cross-sectional area of the lumen by 50–80%. In dry-adapted (24 h) sensilla, the dendrites terminate more proximally and fill the cross-section by 35%. The volume of the low-density matrix increases under dry conditions and decreases under humid conditions. At intermediate ambient humidity, the morphology of these sensilla is halfway between the dry-adapted and the moist-adapted state. The effect of dry-adaptation is reversible, so that sensilla that were first dry-adapted and then moist-adapted (24 h each) before cryofixation cannot be distinguished from moist-adapted sensilla. The reduction of the exposed length of the dendrites is interpreted as a shift of the working range of the receptors and/or protection against desiccation. The current theories of sensory transduction in hygroreceptors, in particular the hygrometer and evaporimeter hypotheses, are discussed with respect to the present findings.  相似文献   

3.
A previously unknown type of sensillum with a thin cuticular dome and two pairs of pores is described in the amphipod Gammarus setosus. There is only one dome sensillum on each interantennal lobe of the head. The receptor is innervated by two sensory dendrites that bifurcate into two pairs of 9 + 0 cilia, concentrically enclosed by four auxiliary cells—two thecogen, one trichogen, and one tormogen and surrounded by a cluster of accessory cells. The ciliary regions are contained in small inner lymph cavities. The outer segments are sheathed by the apical extensions of the thecogen cells, are looped inside the outer lymph cavity, and come in close contact with lipid spheroids inside the dome. The basal bodies consist of microtubule doublets, which extend into the distal segments where they are interspersed with singlets. The nodal inner dendritic segments join the ventral suspension cord of the organ of Bellonci and enter its ganglion. The application of colloidal lanthanum resulted in intraciliary lanthanum deposits. The dome sensilla are presumed to be chemosensory because their cellular plan has similarities to that of some known olfactory and pheromone-sensitive sensilla in decapod crustaceans and insects. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The sensory structures present on the palps and legs of adult Argas persicus Oken (Ixodoidea: Argasidae) were studied by light, scanning and transmission electron microscopy. The number, distribution, surface morphology and the fine structure of the prominent sensilla present on these appendages were determined. The palps have 2 morphologically prominent types of sensilla: one with a grooved surface of the hair and the other having a non-grooved hair. The TEM distinguishes at least 4 prominent subtypes in grooved sensilla with single or double lumina and dendrites occupying the periphery of the central lumen or distributed all over the central lumen. Amongst the sensilla with non-grooved hair-shaft, a rare type of Olfactory Mechanoreceptive (OM) sensillum was found on the palps and the first legs of A. persicus. At the base of the hair-shaft, the OM sensillum has 2 mechanosensory dendrites. The hair-shaft of the sensillum has a porous cuticle, characteristic of an olfactory sensillum. The lumen of the hair-shaft is invested with branching dendrites from 3–8 neurons, which are surrounded by 4 sheath cells. The sensilla on the legs, including those present in the Hallers organ, are of at least 3 prominent categories. (i) Single wall with un-innervated hair-shaft. (ii) Single wall, multiporous sensillum with dendrites present in the hair shaft. (iii) Double walls with spoke channels and dendrites present in the central lumen. Sensory projections from the crown of sensilla located on the distal end of the palp extend to the palpal and suboesophageal (SOG) ganglia. Projections in the SOG extend further to the contralateral side. Sensilla in the Hallers organ project to the first pedal ganglion and to the anterodorsal region of supraoesophageal ganglion. As expected, the primary sensory projections from the sensilla of the other 3 legs extend to the respective pedal ganglia.  相似文献   

5.
Antennal sensilla ofNeomysis integer (leach)   总被引:1,自引:0,他引:1  
G. -W. Guse 《Protoplasma》1978,95(1-2):145-161
Summary The most frequent type of the hair sensilla on the antennae ofNeomysis integer is investigated by electron microscopic methods. The cellular properties of the sensilla are compared with those of other arthropods in order to detect possible homologies.The hairs are innervated by 2, 3, 6, 8, 9, or 10 sensory cells. The dendrites show an inner and outer dendritic segment. Five or six enveloping cells belong to a sensillum. In intermoult stage, processes of all the enveloping cells except the innermost one extend into the hair shaft. The sensory hairs possess only a single liquor cavity, which morphologically is homologous to the inner lymph cavity of insect sensilla. Around the liquor cavity, a supporting structure is located which seems to be identical to the scolopale of chordotonal organs. The six-to tenfold-innervated hairs possess two groups of differently structured dendrites which are regularly arranged on opposite sides of the liquor cavity. The outer dendritic segments are enclosed in a dendritic sheath. It is secreted by the innermost enveloping cell (= dendritic sheath cell of insect sensilla). All the outer dendritic segments terminate in the distal region of the hair shaft which shows a pore at its tip. The possible function of the sensilla is discussed. The double and triple-innervated hairs are considered to be mechano-receptors, whereas the sensilla associated with six to ten sensory cells might be mechano-chemoreceptors.  相似文献   

6.
At least five nonporous sensilla with inflexible sockets (npsensilla) occur on each antenna of both sexes of adult Rhodnius prolixus. Externally the sensillum appears as a short, rounded peg set into a pit surrounded by a depression. A very electron-dense material occurs in the peg lumen and the inner aspect of the pit. Filamentous extensions of this material radiate into the overlying outlets. Each sensillum is innervated by three neurons with unbranched dendrites. Two dendrites extend to the peg tip and distally are covered by a dendritic sheath. The portion of these dendrites within the sheath contains a large number of microtubules. The third dendrite terminates near the base of the dentritic sheath and partially wraps around the other two dendrites. Three sheath cells are associated with each sensillum. Based on similarities in structure with sensilla of known function it is probable that the np-sensilla of R. prolixus are thermo-/hygrosensilla responding to cold, dryness and wetness. The sensilla have a number of structural similarities with insect rectal sheath cells known to absorb atmospheric water by electroosmosis. Possibly this process leads to volumetric alterations of cuticular elements associated with the dendrites and ultimately to mechanotransduction.  相似文献   

7.
The fine structure of the statocyst sensilla of Neomysis integer was investigated. The statocyst contains about 35 sensilla, which are composed of two bipolar sensory cells, nine enveloping cells, and a seta. The sensory cells consist of an axon, a perikaryon, and a dendrite. The dendrite contains a proximal segment with a ciliary rootlet and at least one basal body, and a distal segment with a ciliary axoneme (9 × 2 + 0) at its base. The distal segment extends along the peripheral wall of the seta and is in close contact with the wall of the hair shaft. The enveloping cells surround the proximal and distal segments of the dendrite. The innermost enveloping cell contains a scolopale rod. It surrounds the receptor lymph cavity and secretes flocculent material into this cavity. From the tip of the cell a dendritic sheath, which encloses the distal segment of the dendrite, emerges. A peculiar feature of the second enveloping cell is the presence of a scolopale-like rod, which is more slender and less pronounced than in the first enveloping cell. The seta consists of three parts: a socket, a tubular midpart, and a gutter-like apical part, the tip of which penetrates into the statolith. The seta shows over its full length a bilaterally symmetrical axis that is coplanar with the plane in which the seta is bent toward the statolith. The structure of the seta and the position of the distal segments provide morphological evidence for directional sensitivity of the sensilla and for the magnitude of shear on the setal wall being an adequate stimulus.  相似文献   

8.
Norbert Rieder 《Hydrobiologia》1987,145(1):175-181
A group of nine sensory setae is found on the tip of the antennula ofDaphnia magna in both sexes. Inside a seta four dendrites are situated, each with one receptor cilium. The receptor cilia extend through a liquor space into the exterior part of the seta. The exterior part of the liquor space is divided from the interior part by a knob-like thickening of the innermost layer of the epicuticle, the basal bead. The basal bead narrows the liquor space and the receptor cilia. The interior part of the liquor space is surrounded by five sheath cells, the exterior part by a thin cuticle. In the exterior part the receptor cilia branch partly and reach a terminal pellet on the tip of the seta. The terminal pellet is a thickened part of the epicuticle. It is permeable to several dissolved substances. It is the exterior part of the receptor that projects over the tip of the antennula and seems to be the entire seta. During the premoult the fifth sheath cell builds up the articulation of the seta, the fourth the basal bead, and the third the shaft of the seta. The first sheath cell forms the cuticular sheath. The organ seems to be a chemoreceptor, but the adequate stimulus is as yet unknown.  相似文献   

9.
In Asellus aquaticus certain distal antennular segments bear single sensilla referred to as aesthetascs. These show a proximal stem and a distal bulbous region. Depending on its position, each aesthetasc is innervated by either 50-60 or 70-80 bipolar sensory cells, the perikarya of which are situated within the pedunculus. Within the antennular segment the dendrites develop unbranched cilia (9 X 2 + 0 structure). The sensory cells are unusual in that mono- as well as biciliary dendrites are present within a single aesthetasc, the ratio of both types being correlated with the number of sensory cells. Cilia and receptor lymph cavity are enveloped by a set of 3-4 inner and 13-14 outer sheath cells, which terminate at the base of the sensillum, so that the delicate and poreless cuticle of the bulbous region encloses only outer segments within the receptor lymph fluid. A new molting type in arthropods is described in which the outer sheath cells alone build the new cuticle, whereas the inner sheath cells most probably have a protective function. A definition of aesthetascs is proposed based on fine-structural criteria. Functionally the sensilla are considered to be chemoreceptors. This assumption is confirmed by experiments with diluted vital dye as well as lanthanum showing that dissolved substances penetrate the poreless cuticle instantaneously.  相似文献   

10.
The fine structure of the digitiform sensilla on the distal segment of the maxillar palps of Tenebrio and Dermestes is described. Each sensillum is associated with a single sensory cell and three enveloping cells, which enclose two receptor lymph cavities. The inner receptor lymph cavity of both species shows a different structural feature. Branches of the outer dendritic segments, which contain numerous microtubules, run to the tip of the hairshaft. A dendritic sheath extends to the apex of the peg. The hairshaft possesses a second canal, which is free of dendrites. The poreless hairshaft is inserted in a cuticular canal; the longer distal part of the shaft is positioned in a narrow superficial groove. The digitiform sensilla do not show the typical structures of mechanosensitive sensilla. The absence of pores in the setal wall does not point to a function as olfactory or gustatory hairs. The presumed function of the sensilla is discussed in relation to thermo-, hygro- and CO2-receptors.  相似文献   

11.
In the kelp crab, Pugettia producta, flat plate setae cover all but the ventral surfaces of the walking leg dactyls. Dendrites enter the setal shaft located inside the plate superstructure, and extend to a region of the setal tip that contains a system of minute pores resembling the pore systems found in chemosensory sensilla of insects. Presumably, much of the chemosensitivity of the dactyls in the kelp crab is mediated by the plate setae. In the interior of the dactyl, supporting cells and the neurons innervating plate setae, other types of setae, and other presumptive sensilla form scolopidia. Large scolopidia, containing as many as 12 dendrites, appear to innervate some of the plate setae and also large ventral rodlike setae that might be chemosensory. Two of the dendrites of large scolopidia usually have more densely packed microtubules, longer ciliary axonemes, slightly larger rootlets, and dark A fibers with arms, characteristics indicative of mechanosensory function. Some dactyl setae, therefore, could be both mechanosensory and chemosensory. Small scolopidia containing two or three dendrites that exhibit mechanosensory characteristics appear to innervate small, rodlike setae, which presumably are strictly mechanosensory. The two types of structures located on the epicuticular cap, elliptical structures resembling campaniform sensilla and small cones in pits resembling CAP organs, appear to be dually innervated and presumably are mechanosensory, although other functions are possible. The internal positions of the scolopidia, together with the support afforded by an extracellular dendritic sheath, by the scolopale, and by desmosomelike and septate junctions, may serve to protect internal portions of setal dendrites, some of which appear to remain functional in nonmolting adults that have abraded setae.  相似文献   

12.
The clam shrimp family Lynceidae is unusual in possessing paired fields of short setae on either side of the rostral carina. We describe the position of these fields relative to the direction of water movement in live animals as well as the external and internal structure of these setae. The majority of morphological features support a presumed chemosensory role for these sensilla. These features include the lack of a setal socket and the relatively short length of each seta. The low number of enveloping cells (three or four) is uncharacteristic of chemosensory setae and is more typical of mechanoreceptors, as is the absence of any pores on the setae; these characteristics indicate that these fields may have both functions. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Summary The structure of the setae on the proximal antennal segments of the beetle Loricera pilicornis is described using electron microscopical methods. These setae are part of a prey-capturing apparatus and are inserted within flexible sockets. They have no central lumen.Four or five sensory cells are connected to each seta. One cell is characterized as a mechanoreceptor due to the presence of a tubular body and the location of its dendritic outer segment. The other sensory cells are of two types. One type shows the usual features of sensillar receptors except that the dendritic outer segments end beneath the seta within the cuticular sheath. In the other type all parts of the cell, including the perikaryon, appear undersized, and no axon was found. In a single case a sixth cell was found which lacks any process, although, due to its location, it belongs to the sensory cell group.The enveloping cells also deviate from the usual pattern. Trichogen and tormogen cells have no membrane folds nor microvilli. From the membrane of the thecogen cell, where it borders on the inner receptor lymph cavity, invaginations have developed which form voluminous membrane whorls. Portasomes are found on these membranes.On the basis of the structural features we hypothesize that the setae represent sensilla undergoing stepwise reduction, losing primordial gustatory units whilst the prey-capturing mechanism is optimized.Dedicated to Professor Dr. Dietrich Schneider on occasion of his 65th birthday  相似文献   

14.
The pectines of scorpions are ventral bilateral appendages supporting 104–105 chemosensory sensilla called pegs. Each peg contains 10–18 sensory neurons, some of which show ultrastructural evidence of axo-axonic synapses with other sensory neurons in the same sensillum. In extracellular recordings from single-peg sensilla, individual sensory units can be distinguished by impulse waveform and firing frequency. Cross-correlation analysis of impulse activity showed that at least two of these units, types `A1' and `A2', are inhibited during the 100-ms period immediately following activity of a third unit, type `B'. This interaction between sensory units in a single sensillum also occurs in surgically isolated pectines, indicating that it does not involve efferent feedback from the central nervous system. Other sensillar neurons appear to have excitatory interactions. Thus, in scorpion pectine, chemosensory information undergoes some form of processing within individual sensilla prior to its relay to the CNS, making this an unusually accessible preparation for study of first-order chemosensory processing events. Accepted: 12 April 1997  相似文献   

15.
The isopod Sphaeroma hookeri and many other isopods and peracarids have a sensory spine with laterally inserting sensory hair, positioned in the apical region of the propodal palm of pereopod 1. This spine is innervated by five to eight sensory cells (each giving rise to one cilium) the dendrites of which can be divided into an inner and outer dendritic segment. The cilia are surrounded by an extracellular, electron-dense dendritic sheath. Thirteen enveloping cells are present. The outer dendritic segment (structure beyond the basal bodies) contains two receptor lymph cavities; the inner one lying within the dendritic sheath is homologous with the inner receptor lymph cavity of insects. Scolopales, or tubular bodies, are lacking; their function is probably accomplished by the dendritic sheath. Apically the sensory hair does not have a pore, and the spine is heavily sclerotized. The inner dendritic segment begins with a basal body from which rootlets of different length and thickness extend into the dendrite. In the latter is an accumulation of vesicles. The dendrites keep close contact with other dendrites and the enveloping cells by desmosomal membrane structures. The possible importance of the sensory spine for phylogenetic studies is discussed.  相似文献   

16.
Summary Three types of sensilla occurring on the lips and on the antennae of Peripatopsis moseleyi have been investigated by scanning and transmission electron microscopy. On the lips sensory spines can be found which contain numerous cilia originating from bipolar receptor cells. They reach the tip of the spine where the cuticle is modified. The perikarya of the sensory cells, a large supporting cell with a complicated surface and a second type of receptor, form a bud-like structure and are surrounded by a layer of collagen fibrils. The second receptor cell bears apical stereocilia as well as a kinocilium which are directed towards the centre of the animal — thus the cell appears to be turned upside down. The sensilla of the antennae are 1) sensory bristles containing two or three kinds of receptor cells, one of which bears an apical cilium and one kind of supportive cell and 2) sensory bulbs located within furrows consisting of receptor cells with branched cilia and two kinds of supportive cells which are covered by a modified thin cuticle. According to the electron microscopical findings the sensory spines on the lips are presumably chemoreceptors. The sensory bristles on the antennae can be regarded as mechanoreceptors and the sensory bulbs as chemoreceptors.Supported by the Deutsche Forschungsgemeinschaft (Sto 75/3)  相似文献   

17.
T. Haug  H. Altner 《Tissue & cell》1984,16(3):377-391
The structure of the apical sensilla on the antennule of the terrestrial isopod Porcellio scaber was examined in cryofixed and freeze substituted (CRF) and chemically fixed and dehydrated (CHF) material. CRF specimens generally showed a preservation superior to CHF material. Only in deeper regions did the tissue show damage from freezing. Each of the 13–22 sensilla contains two sensory cells. In contrast to earlier reports, it was observed that the dendritic segments of these cells are arranged in a unique, concentric manner. In CRF specimens the dendrites reach the tip of the sensilla and border upon the innermost layer of the complicated wall of the peg which is not pierced by pores. Silver-protein and lanthanum failed to penetrate the wall of the sensilla and also did not reach the dendrites via an apical pore, which therefore is regarded as a molting pore. The lymph spaces which, in CHF specimens, are observed around the dendrites and beneath the cuticle within the antennal tip are regarded as artefactual. From similarities in the dendritic structures to insect hygroreceptors and their relationship to the adjoining cuticle it can be assumed that the antennular sensilla in Porcellio are sensitive to humidity changes. Mechanoreception and chemoreception, however, cannot entirely be excluded as possible functions.  相似文献   

18.
Lepidopteran larvae possess two pairs of styloconic sensilla located on the maxillary galea. These sensilla, namely the lateral and medial styloconic sensilla, are each comprised of a smaller cone, which is inserted into a style. They are thought to play an important role in host-plant selection and are the main organs involved in feeding. Ultrastructural examination of these sensilla of fifth instar Lymantria dispar (L.) larvae reveal that they are each approximately 70 um in length and 30 um in width. Each sensillum consists of a single sensory peg inserted into the socket of a large style. Each peg bears a slightly subapical terminal pore averaging 317 nm in lateral and 179 nm in medial sensilla. Each sensillum houses five bipolar neurons. The proximal dendritic segment of each neuron gives rise to an unbranched distal dendritic segment. Four of these dendrites terminate near the tip of the sensillum below the pore and bear ultrastructural features consistent with contact chemosensilla. The fifth distal dendrite terminates near the base of the peg and bears ultrastructural features consistent with mechanosensilla. Thus, these sensilla each bear a bimodal chemo-mechanosensory function. The distal dendrites lie within the dendritic channel and are enclosed by a dendritic sheath. The intermediate and outer sheath cells enclose a large sensillar sinus, whereas the smaller ciliary sinus is enclosed by the inner cell. The neurons are ensheathed successively by the inner, intermediate, and outer sheath cells.  相似文献   

19.
The structure of the sensory organs situated on palps and chelicerae of the quill mite Syringophilopsis fringilla (Fritsch, 1958) was examined with the use of scanning and transmitting electron microscopy. The tarsal segment of the palps bears 8 sensilla of three types: two contact chemo-mechanoreceptor sensilla, a single chemoreceptor (olfactory) sensillum, and five tactile mechanoreceptor sensilla. All other sensilla situated on basal palpal segments and on cheliceral stylets are represented exclusively by tactile mechanoreceptors. A proprioceptor sensillum was revealed in the movable digit of chelicerae; the modified cilia of dendrites of 5 sensory neurons of this sensillum run inside the inner non-sclerotized core of the stylet and end at different levels in its apical part, attaching to electron-dense rods connected with a sclerotized sheath of the stylet. The authors assume that the proprioceptor sensillum of the stylet detects the strength of the pressure of the stylet of the movable digit on the quill wall during its piercing, and palpal sensilla determine the optimal place for this process.  相似文献   

20.
Summary The cerci of the praying mantid, Archimantis brunneriana Sauss., are paired segmented sensory organs located at the tip of the abdomen. Basally the cercal segments are slightly flattened dorso-ventrally and are fused to such a degree that it is difficult to distinguish them. Distally the segments become progressively more flattened laterally and their boundaries become more obvious.Two types of sensilla are present on the cerci, trichoid sensilla and filiform sensilla. Trichoid hairs are longest on the medial side of the cerci and toward the cercal base. On the proximal cercal segments they are grouped toward the middle of each segment while they are more uniformly distributed on the distal segments. Filiform sensilla are found at the distal end of each segment except the last and are most abundant on the middle segments of the cercus. Both the number of cercal segments and the number of sensilla are variable. Trichoid hairs are highly variable in appearance from short and stout to long and thin. They arise from a raised base, have a fluted shaft, and some have a pore at the tip. They are innervated by from one to five dendrites, one of which is always considerably larger than the others. Some of the dendrites continue out into the shaft of the hair.Filiform hairs have fluted shafts and are mounted in a flexible membrane within a cuticular ring in a depression. They are innervated by a single large sensory neuron, the dendrite of which passes across a flattened area on the inner wall of the lumen of the hair. The dendritic sheath forms the lining of the ecdysial canal and is therefore firmly attached to the hair. The dendrite is attached to the sheath by desmosomes distally and is penetrated by projections of the sheath more proximally. A fibrous cap surrounds the dendrite and may hold it in place relative to the hair.The cercal receptor system of Archimantis is compared to those of cockroaches and crickets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号