首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the well-known mutualism between ants (Hymenoptera: Formicidae) and aphids (Homoptera: Aphididae), we conducted a five-year experiment of ant-exclusion from the canopies of citrus trees as a possible method of biological control of aphids. However, our results showed that the exclusion of ants from the canopies increased, instead of reducing, aphid abundance. To explain this unexpected result, we reasoned that the exclusion of ants from the canopies might also have excluded crawling insects that prey on aphids, such as the European earwig (Forficula auricularia L., Dermaptera: Forficulidae). Such a possibility is supported by the negative relationship between aphid density and the abundance of earwigs, consistent with a top-down control of aphids by earwigs. In contrast, the abundance of other aphid predators (Coleoptera: Coccinellidae, and Heteroptera) had no such negative effect on aphid density but a positive one, suggesting a bottom-up control, and showed no differences between control and ant-excluded trees. Thus, the most likely explanation for the increase in aphid abundance in the ant-excluded trees is the absence of earwigs from the canopies of the experimental trees, providing further evidence of the major role that earwigs play as control agents of aphids in cultivated trees.  相似文献   

2.
北京出入境检验检疫局从美国进境旅客携带的石榴中检出欧洲球螋。了解欧洲球螋的基本特性,能为相关部门对其检疫鉴定提供参考依据。对欧洲球螋的相关文献进行了查阅和整理,详细介绍了欧洲球螋的分类地位、分布、形态特征及近似种等信息,我国出入境检验检疫部门对球螋属的截获情况,讨论了欧洲球螋的检疫意义。认为欧洲球螋在我国无分布且具有一定的入侵风险,口岸应对该虫引起足够的重视。  相似文献   

3.
Earwigs (Dermaptera), such as Forficula auricularia L., are important euryphagous predators for a wide variety of prey and can markedly influence the populations of orchard pests. Most previous studies on earwig feeding behaviour have not used adult beetles of the prey species; few researchers have focused on prey preference in earwigs. Some fragments of beetle exoskeleton and an earwig adult, Anisolabella marginalis (Dohrn), were found in the same cage, where adults of ambrosia beetle, Euwallacea interjectus (Blandford), were emerging from the logs of a fig tree infected with Ceratocystis canker (fig wilt disease). Thus, A. marginalis was suspected of being a predator of E. interjectus. To shed light on this issue, in the laboratory, we set up a test arena and observed and recorded behavioural interactions between A. marginalis and E. interjectus. E. interjectus was collected from the logs of fig trees and reared on an artificial diet, along with six different ambrosia beetle species, which were collected from a trap (baited with ethanol) and a fallen maple tree. A series of laboratory experiments demonstrated that A. marginalis is actually a predator of E. interjectus and other species of ambrosia beetle, indicating its a potential for use in effective pest control in the field. The predators frequently consume and tend to select their prey depending on prey size, rather than sex and beetle species. Furthermore, earwigs have alternative predatory strategies for dealing with seven different species, although they use their forceps to cut the body of most tested beetles.  相似文献   

4.
Earwigs protect themselves against predators using pincer-like cerci and/or malodorous exudates secreted from abdominal glands. Little is known about the chemistry of these secretions and their potential functions. However, because earwigs live in aggregations and overwinter in soil, they are exposed to high microbial loads throughout their lifecycle, and we therefore hypothesized that the secretions are used not only to deter predators but also to combat pathogens and parasites in their environment. We analyzed the defensive secretions of the European earwig Forficula auricularia, the short-winged earwig Apterygida media and the woodland earwig Chelidurella guentheri by gas chromatography–mass spectrometry. The secretions of all three species contained 2-methyl-1,4-benzoquinone and 2-ethyl-1,4-benzoquinone, whereas A. media also produced 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3-methyl-1,4-benzoquinone. The latter has not been identified in the exudates of insects before. The composition and/or quantity of these components were species-specific and partially sex-specific. All secretions showed antimicrobial activity against Gram-positive and Gram-negative bacteria as well as two entomopathogenic fungi. Furthermore, the secretion of F. auricularia displayed nematicidal activity against Caenorhabditis elegans. Our data support the hypothesis that earwig secretions are multifunctional, serving both to deter predators and sanitize the microenvironment.  相似文献   

5.
Use of predators, parasitoids and entomopathogens as biocontrol agents in pome fruit production can lead to more efficient and sustainable pest management programmes. The European earwig (Forficula auricularia Linnaeus [Dermaptera: Forficulidae]) is a major predator of key pests in pome fruit orchards, and entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae are obligate parasites of a large number of insect species. Therefore, the interaction between earwigs and EPNs can play an important role in pest management programmes. Susceptibility of the European earwig to Steinernema carpocapsae, Steinernema feltiae (Steinernematidae) and Heterorhabditis bacteriophora (Heterorhabditidae) was evaluated. S. carpocapsae was the only tested EPN capable of killing the European earwig. However, the European earwig can detect the presence of S. carpocapsae and therefore avoid nematode‐treated shelters. An earwig deterrent activity in EPN‐killed codling moth larvae that reduces the foraging of European earwig on insect cadavers containing nematodes and allows nematodes to complete their life cycle was also assessed with the three species of nematodes. These findings suggest a positive compatibility between the European earwig and EPNs.  相似文献   

6.
The invasive cherry vinegar fly, Drosophila suzukii, has been identified in Europe as a destructive fruit pest since its arrival in 2008. In the present laboratory study, three predatory insects (Orius majusculus, Chrysoperla carnea, and Forficula auricularia) naturally occurring on fruit crops in Europe were investigated for their ability to attack and feed on D. suzukii within and outside fruits. The predators were provided with various D. suzukii life stages (eggs, larvae, pupae or adults) exposed or within infested cherries. The anthocorid bug O. majusculus fed on eggs and larvae, but was not able to attack pupae. Larvae of the lacewing C. carnea preyed upon D. suzukii eggs, larvae and pupae and also captured adult flies. The European earwig F. auricularia was the most voracious predator of these three tested species. Although the earwigs were not able to catch adult flies, they readily preyed upon every other developmental stage. Adult O. majusculus or third instar larvae of C. carnea significantly reduced the offspring of D. suzukii from infested cherries, when these contained the egg stage of the pest. None of the predators were able to attack early larval stages inside the cherries. But pupae that protruded from the fruit epicarp or that had pupated outside the fruit were accessible to lacewing larvae and earwigs and significantly reduced by them. Orius bugs, lacewing larvae and earwigs were able, under laboratory conditions, to capture and prey upon various life stages of the invasive pest, if not completely concealed inside the fruit. Our findings suggest that these generalist predators may have some control capacity on infested fruit in cultivated fruit crops and also in non‐crop habitats.  相似文献   

7.
The preference of herbivores for different host plants can be modulated by plant ontogeny. In agricultural pest management, this has implications for sowing dates and pest monitoring. In the last 20 years, the European earwig (Forficula auricularia), a cosmopolitan pest, has been increasingly implicated in damage to grain crops in Australia. Among these, rapeseed, Brassica napus, appears especially at risk, but little information on F. auricularia as a grain pest is available. We tested the susceptibility of seven grain crops commonly grown in Australia to infestation by F. auricularia using closed microcosm experiments, exposing plant seedlings at two early growth stages to four different life stages of F. auricularia. Lucerne and rapeseed were shown to be the most vulnerable crops, and younger seedlings experienced significantly more damage than older seedlings across all crop types. Fourth instar F. auricularia were found to cause greater feeding damage than younger or older earwigs, while adults collected in winter generally caused more damage than those collected in summer. Surprisingly, even second instar F. auricularia caused greater damage than summer adults. This variation could reflect the ontogenetically dynamic nutritional needs of earwigs. Recent studies of F. auricularia's life cycle in southern Australia indicate that these damaging life stages have some overlap with sowing dates of the crops tested here, exposing their vulnerable seedling stage to infestation. The phenology of F. auricularia in southern Australia therefore partly drives its ability to act as a pest. Future monitoring will likely need to track the distribution of F. auricularia life stages in order to effectively mitigate risks to vulnerable crops.  相似文献   

8.
The European earwig (Forficula auricularia) is an invasive species in the Falkland Islands, causing considerable problems for local horticulture, as well threatening indigenous ecosystems. To assess the potential of a classical biological control introduction two parasitoid fly species, Triarthria setipennis and Ocytata pallipes (Diptera: Tachinidae), were collected from sites in southern and northern England and then tested for their suitability as earwig biological controls at Egham, UK. Both species had previously been introduced into North America for earwig control however little is known of their long-term efficacy and host specificity. Host range tests including both target and non-target species were done. As there are no native Dermaptera on the Falkland Islands, tests were restricted to the field cricket Gryllus assimilis and the Dubia cockroach Blaptica dubia, as representatives of insect orders phylogenetically closely related to earwigs. A second cricket species (Gryllus bimaculatus) was included in an egg-depositing experiment for O. pallipes. Both tachinid species successfully parasitised and emerged from earwigs under laboratory conditions but no signs of parasitisation and development were observed in either the cricket or cockroach.  相似文献   

9.
Although earwigs (Dermaptera) may be important components of ecosystems because of their locally high abundance and omnivory, their vertical distribution among forest strata is poorly understood. This study used a mobile aerial lift platform to survey the spatiotemporal distribution of earwigs along the vertical dimension in a forest. In 2013 and 2014, 57 trees in a lowland floodplain forest were sampled in the southeastern Czech Republic, Central Europe. Earwigs were collected along the complete vertical gradient of the foliage of the trees using square beating sheets and exhaustors. Of the three recorded earwig species (Apterygida media, Chelidura acanthopygia and Forficula auricularia), A. media was the most abundant. The distribution of its abundance with the height from ground (in the tree leaf layer) was unimodal, with a peak at 4–10 m, indicating that A. media is arboricolous. The vertical stratification of A. media differed among developmental stages, and in its abundance among tree species. Investigation of insect vertical stratification in forests should be facilitated by the use of a mobile aerial lift platform.  相似文献   

10.
Woolly apply aphid predation by the common earwig, Forficula auricularia L., and other predators was compared in high, intermediate and low earwig density plots of mature apple trees at an experimental orchard in the Netherlands. Aphid colonies were discovered and exterminated primarily by earwigs much more rapidly in the high and intermediate earwig density plots than in the low density plots. Where earwigs were excluded from trees by Tanglefoot bands around the trunks, woolly apple aphids infested 30–35% of new growth shoots whereas less than 10% of the shoots were infested where earwigs were relatively abundant.Several factors including the availability of alternate prey (e.g. Aphis pomi De Geer), earwig developmental phenology and weather probably influenced the outcome of the predation experiments. Nevertheless earwigs play an important role in suppressing woolly apple aphid populations and are potentially important, naturally occurring biological control agents for this pest.
Résumé L'action prédatrice exercée sur le puceron lanigère par le perceoreille commun, Forficula auricularia, et par d'autres prédateurs, a été comparée dans des parcelles d'un verger expérimental de pommiers adultes aux Pays-Bas. Ces parcelles étaient caractérisées par des densités fortes, intermédiaires, et basses en perce-oreilles. Les colonies de pucerons ont été découvertes et exterminées principalement par les perce-oreilles beaucoup plus rapidement dans les parcelles à forte et moyenne densité de perce-oreilles que dans celles à faible densité. Les pucerons lanigères ont colonisé 30 à 35% des nouvelles pousses lorsque les perce-oreilles étaient exclus par une barrière mécanique (Tanglefoot), alors que moins de 10% des pousses ont été infestées lorsque les perce-oreilles étaient relativement abondants.Plusieurs facterus ont probablement influencé le résultat des expériences de prédation, notamment la présence de proies alternatives (par exemple Aphis pomi), la phénologie du développement des perce-oreilles et le climat. Néanmoins, les perce-oreilles ont joué un rôle important en limitant les populations du puceron lanigère, et constituent potentiellement d'importants agents de contrôle naturel de ce ravageur.
  相似文献   

11.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   

12.
Beneficial arthropods are often used for suppressing specific pest outbreaks in agricultural crop systems. The European earwig, Forficula auricularia L., (Dermaptera: Forficulidae), is an important natural enemy in fruit orchards. Recently, ecological studies were published describing earwig dispersal and survival during summer, hereby revealing clear differences between populations with a single brood (SBP) and two broods a year (DBP). In this article, we will describe three potential mortality factors of earwigs during the underground winter period, namely cold temperatures, parasitoids and soil tillage. This knowledge is essential for making efficient management strategies for increasing earwig abundance in fruit orchards. The effect of cold temperatures was checked during a 3‐year semi‐field experiment. Parasitism rates of Triarthria spp. (Fallén) and Ocytata pallipes (Fallén) (Diptera: Tachinidae) were obtained in a rearing experiment. The negative effect of soil tillage on the survival of earwigs nests was checked in a field experiment covering a 4‐year time period. A strong, negative relation between temperature [cooling day degrees (CDD)] and survival of female and male earwigs during winter was found. Male earwigs of SBP died very quickly, mimicking natural conditions. Between 60% and 90% of females do not survive winter. Survival of females in DBP was higher than in SBP. Parasitism rates vary a lot between species, generation, year and location (0–20%). During winter, we found a maximum mortality of 13%. There is a clear trend that soil tillage can reduce the number of nymphs in spring and summer by 50%. Implications for biocontrol are the following: (i) mortality owing to temperature can be predicted using CDD and if necessary preventive management actions can be undertaken to control pests; (ii) parasitism rates are negligible compared to high impact of temperature; and (iii) soil tillage can be timed more accurately using a recently developed day degree model.  相似文献   

13.
The natural history of many entomopathogenic nematode species remains unknown, despite their wide commercial availability as biological control agents. The ambushing entomopathogenic nematode, Steinernema carpocapsae, and the introduced European earwig, Forficula auricularia, forage on the soil surface. Since they likely encounter one another in nature, we hypothesized that earwigs are susceptible to nematode infection. In the laboratory, the LC50 for F. auricularia was 226 S. carpocapsae/earwig and the reproductive potential was 123.5 infective juvenile nematodes/mg tissue. This susceptibility depended on host body size with significantly higher mortality rates seen in larger earwigs. In a study of host recognition behavior, S. carpocapsae infective juveniles responded to earwig cuticle as strongly as they did to Galleria mellonella cuticle. We also found that earwigs exposed to S. carpocapsae cleaned and scratched their front, middle and back legs significantly more than controls. Coupled with previous field data, these findings lead us to suggest that F. auricularia may be a potential host for S. carpocapsae.  相似文献   

14.
It is well known that spiders are present in high numbers in orchards and may contribute to biocontrol. Some recent studies in central Europe further showed that some spiders are active year-round and consume pests even in winter. Using cardboard traps laid every two weeks, we carried out a survey to determine which spider and earwig species are active from September to May in an experimental, pesticide-free, apple orchard under a Mediterranean climate. We observed that spider activity was never completely absent. The structure of the spider communities showed a marked seasonality in three periods (so-called ‘autumn’, ‘winter’ and ‘spring’). Only two spider genera, Philodromus and Trachelas, were highly active in winter (percentage of catches during this season above 40%) and six others (Lathys, Clubiona, Gnaphosa, Theridion, Phrurolithus) had moderate activity (between 20 and 40%). The two earwig species had different patterns of winter activity with Forficula auricularia almost absent whereas F. pubescens was moderately active on trees. Spider community abundance, diversity and evenness significantly decreased between autumn and winter and remained low in the following spring probably because the attractiveness of the traps is much lower at this time of year due to mild temperatures and the presence of leaves on the trees. Winter-active spiders could contribute to pest biocontrol during the cold season and we advocate that the use of broad-spectrum pesticides at the end of winter, as classically applied in orchards, may be counter-productive for pest control.  相似文献   

15.
Woolly aphid (Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae), was monitored over three growing seasons (1995--1998) to assess its abundance and management under apple IPM programs at Bathurst on the Central Tablelands of NSW, Australia. Woolly aphid infestations were found to be extremely low in IPM programs utilising mating disruption and fenoxycarb for codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) control. This was the direct result of increased numbers of natural enemies. No insecticides were applied for woolly aphid control. Under the IPM strategies tested the principal control agent was identified as European earwig (Forficula auricularia L.) (Dermaptera: Forficulidae). Earwigs in combination with Aphelinus mali (Haldeman) (Hymenoptera: Aphelinidae) reduced woolly aphid infestations below the action threshold set by commercial growers. However, A. mali together with other flying natural enemies, e.g., ladybirds, lacewings and hoverflies, did not provide commercially acceptable control of woolly aphid in the absence of earwigs. Under the conventional spray program, using the broad-spectrum insecticide azinphos-methyl for codling moth control, the level of woolly aphid infestation increased with each successive season and biological control was not established. When azinphos-methyl was withdrawn, natural enemies migrated in and provided control of woolly aphid within one season. This is the first study to show that the biological control of woolly aphid can be achieved in a commercially viable IPM program.  相似文献   

16.
The woolly apple aphid (WAA), Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae) is a well-known pest of apple orchards world-wide. Several studies have demonstrated variable control of WAA populations by the European earwig, Forficula auricularia (L.) (Dermaptera: Forficulidae) and the WAA parasitoid Aphelinus mali (Halderman) (Hymenoptera: Aphelinidae). We examine whether a beneficial interaction between F. auricularia and A. mali exists and calculate optimal numbers for each species to maintain WAA infestations below acceptable levels. We demonstrate that trees possessing >14 earwigs per trunk trap per week within the first seven weeks post-blossom contained WAA infestations well below acceptable levels. Where these earwig thresholds were not met, a first generation of A.mali greater than 0.5 wasps per tree was required. If these beneficial insect targets were not met, severe WAA infestations occurred. Our findings suggest that if F. auricularia and A. mali numbers exceed these thresholds chemical intervention may not be required.  相似文献   

17.
Corpora cardiaca of the earwigs Labidura riparia and Forficula auricularia contain a substance that causes hyperlipaemia in migratory locusts and hypertrehalosaemia in the American cockroaches. A conspecific bioassay in L. riparia revealed that this factor is lipid-mobilizing. Isolation of the neuropeptide was achieved by single-step RP-HPLC. The primary structure of the earwig adipokinetic peptide was elucidated by automated Edman degradation in combination with matrix-assisted laser desorption/ionization mass spectrometry. It is a blocked octapeptide, pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp-NH2, previously denoted as Grb-AKH and first identified in Gryllus bimaculatus ( Gäde & Rinehart 1987 ). The synthetic peptide co-chromatographed under various conditions with the native peptide and, in biological assays, resulted in lipid-mobilization in L. riparia when injected in low concentration.  相似文献   

18.
The European earwig (Forficula auricularia) was formerly thought to present a mosaic of populations differing in their reproductive biology. We show that it is comprised of two as yet unrecognized sibling species. The molecular divergence between the two species, for a 627-bp amplified fragment overlapping the COI and COII mitochondrial loci, is six times larger than intraspecific variation. A species with two clutches a year lives predominantly in lowland and oceanic European habitats. A species with one clutch a year—except in the Mediterranean area where it has two clutches—lives predominantly in highland and continental European habitats. They both invaded North America during the 20th century, respectively, from the west and the east coasts, with no apparent mixing of their populations. The two species can occur in sympatry in Europe and are reproductively isolated by nearly complete failure to produce F1 hybrids.  相似文献   

19.
Earwigs (Forficula auricularia L.) were collected from an untreated apple orchard every 2 weeks from June to October 1979. Percentage parasitism at the times of collection was calculated from the numbers of parasitoids that emerged. Two tachinidsRhacodineura pallipes Fallen andDigonochaeta spinipennis Meigen parasitised earwigs, starting between 21 June and 5 July and continuing through July. Parasitism byR. pallipes reached a peak of 16 % in late July; fewer earwigs were parasitised byD. spinipennis. Both tachinids had one generation per year;D. spinipennis overwintered as puparia, andR. pallipes as larvae in earwig hosts or as adults. In the orchard, puparia of both tachinid species were hyperparasitised byDibrachys cavus (Walker) (Pteromalidae) andPhygadeuon vexator (Thunberg) (Ichneumonidae).  相似文献   

20.
  • 1 Phenological day degree models are often used as warning systems for the emergence of arthropod pests in agricultural crops or the occurrence of natural enemies of the pest species. In the present study, we report on a case study of the European earwig Forficula auricularia L., which is an important natural enemy in pipfruit orchards, and describe how such a day degree model can be used to avoid negative effects of crucial orchard management, such as spray applications and soil tillage. A precise timing of these interventions in relation to the phenology of natural enemies will enhance biocontrol.
  • 2 Earwig population dynamics are characterized by single‐ and double‐brood populations, each with specific biological characteristics.
  • 3 A day degree model capable of predicting the phenology of local earwig populations of both population types was developed. The model was checked for accuracy by comparing the first field observation dates of various life stages with predicted values using temperature data from the nearest weather station. In addition, variation in development time was assessed using field data.
  • 4 The model was able to make predictions on a global scale. Although single‐ and double‐brood populations differ in phenology, the predictions of first appearance dates were similar. Variation in development time showed that single‐brood populations were more synchronized.
  • 5 Our phenological model provides an accurate tool for predicting and simulating earwig population dynamics, as well as for enhancing the biocontrol of pests in pipfruit orchards.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号