首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the levels of pathogen infection in parental beetles, parasitism of the offspring, abundance of predators and breeding performance success of univoltine populations of Ips typographus in plots characterized by short‐term (2–3 years) outbreaks vs. those with long‐term (>10 years) outbreaks on two localities at ca. 1100 m altitude in the ?umava Mts. The numbers of I. typographus were high in all plots, whether the plots were characterized by long‐term outbreaks or short‐term outbreaks. The numbers of maternal galleries in the sample areas ranged from 300 to 400 per m2. The density of parental beetle galleries, abundance of surviving specimens of I. typographus, and length of maternal galleries did not differ between plots. The short‐term outbreaks had only fewer ectoparasitoids of I. typographus and a lower percentage of parasitism and infection level of Mattesia schwenkei than the long‐term outbreaks even though the maternal gallery densities and beetle production were the same. The most mortality appeared to be caused by intraspecific larval competition, and the identical reproductive success in plots with short‐term and long‐term outbreaks indicates that the negative feedback resulting from parasitoids and entomopathogens does not substantially reduce beetle numbers. Although entomopathogenic fungi as Beauveria bassiana occur naturally in the galleries of spruce bark beetles, there was no evidence of its presence in the studied population. The low levels of predation and/or parasitism in both kinds of plots indicate that natural enemies did not play a significant role in reducing outbreak numbers of I. typographus.  相似文献   

2.
3.
The terpenoid and phenolic constituents of conifers have been implicated in protecting trees from infestation by bark beetles and phytopathogenic fungi, but it has been difficult to prove these defensive roles under natural conditions. We used methyl jasmonate, a well-known inducer of plant defense responses, to manipulate the biochemistry and anatomy of mature Picea abies (Norway spruce) trees and to test their resistance to attack by Ips typographus (the spruce bark beetle). Bark sections of P. abies treated with methyl jasmonate had significantly less I. typographus colonization than bark sections in the controls and exhibited shorter parental galleries and fewer eggs had been deposited. The numbers of beetles that emerged and mean dry weight per beetle were also significantly lower in methyl jasmonate-treated bark. In addition, fewer beetles were attracted to conspecifics tunneling in methyl jasmonate-treated bark. Stem sections of P. abies treated with methyl jasmonate had an increased number of traumatic resin ducts and a higher concentration of terpenes than untreated sections, whereas the concentration of soluble phenolics did not differ between treatments. The increased amount of terpenoid resin present in methyl jasmonate-treated bark could be directly responsible for the observed decrease in I. typographus colonization and reproduction.  相似文献   

4.
1 Populations of the spruce bark beetle, Ips typographus (L.), are known to grow rapidly in storm‐disturbed stands as a result of relaxation from intraspecific competition. In the present study, it was tested whether a second mechanism, escape in space from natural enemies, also contributes to the rapid population increase. 2 The experiment was conducted during the initiation phase of five local outbreaks of I. typographus triggered by a storm‐disturbance in November 1995 in southern Sweden. 3 The impact of natural enemies on the ratio of increase (number of daughters per mother) of I. typographus was compared pairwise between disturbed stands with high numbers of storm‐felled trees and undisturbed stands without wind‐felled trees. 4 Enemy impact was assessed by comparing the ratio of increase in uncaged (exposed to enemies) and caged (protected from enemies) bolts colonized by I. typographus prior to being placed in the stands. The experiment was conducted in the second and third summers after the storm‐felling. 5 Enemy impact was about twice as high in stands without wind‐felled trees compared with in stands with wind‐felled trees in the second summer whereas there was no significant difference between the stand types in the third summer. 6 The result demonstrates that spatial escape from enemies contributes to the rapid population growth of I. typographus after storm‐disturbances.  相似文献   

5.
Abstract:   The development of the natural enemy complex, its within-tree distribution and the resulting mortalities imposed on bark beetles were investigated during two consecutive years (1994, 1995) at the peak of an Ips typographus infestation. For this reason bolts from infested spruce trees were incubated until the inhabiting insects had emerged. Some 17 000 antagonists were identified and found to belong to 16 predatory and 14 parasitic insect species. Among the predators the Dolichopodidae (Dip.) were most abundant, while among the parasitoids the Pteromalidae (Hym.) ranked first. Parasitoids preferred the upper tree parts, while predators were more abundant in the lower parts. Total bark beetle mortality was assessed based on the literature data on the per capita consumption of the antagonistic larvae. In the first year, the most destructive group were the dolichopodid flies, killing three to seven times more bark beetle larvae than the second ranking Lonchaeidae (Dip.) and the Pteromalidae. In the second year, the pteromalid parasitoids killed 2.5 times more larvae than the dolichopodids. Total bark beetle survival was assessed to decrease from 46 to 18% in the course of the 2 years.  相似文献   

6.
7.
Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.  相似文献   

8.
  1. As the development of the eight‐toothed spruce bark beetle Ips typographus is temperature‐dependent, climate change may encourage development of its additional generations per year and facilitate mass outbreaks further north than previously known.
  2. The aim of the study was to analyse historical changes in effective temperature sums (ETSs) and early season swarming weather for I. typographus in different forest zones of European Russia between 1960 and 2016. The difference in ETSs was analysed with linear regression using daily temperature data from the 30 meteorological stations. Historical data regarding the location of I. typographus outbreaks were examined and changes in their distribution during the entire study period were analysed.
  3. There was a substantial increase in ETSs, especially in the latter half of the study period. Increased ETSs coincided with more favourable conditions for swarming of I. typographus. Areas with favourable ETSs for the complete development of bivoltine populations of I. typographus (>1500 DD) shifted northwards on average 450 km during the entire study period.
  4. The northward shift of ETSs may enhance the transition from univoltine to bivoltine life cycles of I. typographus in the south and middle taiga and from bivoltine to trivoltine life cycles in conifer‐broadleaf forests.
  相似文献   

9.
The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.  相似文献   

10.
Emergence from brood logs, take-off activity and the duration of tethered flight was recorded in the first laboratory generation of the bark beetle Ips typographus L. (Coleoptera: Scolytidae) from five locations (ca 300 km apart) in Sweden and Denmark. Beetles of northerly origin emerged later from brood logs. This pattern was associated with an increasing proportion on non-fliers towards the north. After overwintering, both the rate of development of flight activity and the proportion of non-fliers were the same among populations. Flight duration of fliers was similar among populations and appeared unaffected by outbreak conditions.  相似文献   

11.
In recent decades we have seen rapid and co‐occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi‐annual landscape‐wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co‐occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed‐species and age‐heterogeneous forests with good site‐matching tend to be less susceptible to large‐scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved.  相似文献   

12.
Predation and bark beetle dynamics   总被引:4,自引:0,他引:4  
John D. Reeve 《Oecologia》1997,112(1):48-54
Bark beetle populations may undergo dramatic fluctuations and are often important pests in coniferous forests. Their dynamics are thought to be primarily driven by factors affecting the resistance of the host tree to attack, i.e., bottom-up forces, while natural enemies are usually assigned a minor role in these systems. I present behavioral experiments that suggest that the clerid beetle Thanasimus dubius may be an important source of mortality for the bark beetle Dendroctonus frontalis during attack of the host tree, and determine the nature of the functional response of T. dubius under conditions close to natural. I also examine the numerical response of T. dubius to large-scale fluctuations in D. frontalis density, and the relationship between bark beetle population trends and predator density, and find that beetle populations tend to decline when predator densities are high. Combined with the effects of clerid larvae on bark beetle broods, these results suggest that top-down forces generated by natural enemies could also be an important component of bark beetle dynamics. The implications of these results for bark beetle dynamics are discussed in relation to the prolonged life-cycle of clerid beetles. Received: 23 January 1997 / Accepted: 5 April 1997  相似文献   

13.
Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the Eurasian spruce bark beetle Ips typographus was significantly higher than for the other bark beetle species. The spatial synchrony observed in epidemic bark beetles was also compared with previously published patterns of synchrony in outbreaks of defoliating forest Lepidoptera, revealing a marked difference between these two major insect groups. The bark beetles exhibited a generally lower degree of spatial synchrony than the Lepidoptera, possibly because bark beetles are synchronized by different weather variables that are acting on a smaller scale than those affecting the Lepidoptera, or because inherent differences in their dynamics leads to more cyclic oscillations and more synchronous spatial dynamics in the Lepidoptera.  相似文献   

14.
Bark beetle infested pines are an ephemeral habitat utilized by a diverse assemblage of insects. Although many bark beetle insect associates have little or no measurable impact on bark beetle brood production, some reduce brood production by either competing with brood for the limited phloem tissue or by feeding on brood. Several studies have observed synchrony between the colonization of hosts by bark beetles and the arrival of insect associates. Some insect associates mediate synchrony with bark beetle mass attacks with kairomonal responses to bark beetle aggregation pheromones. The objectives of this study were to document the community of Coleoptera associated with the southern Ips (Ips avulsus, Ips calligraphus and Ips grandicollis) and to test the hypothesis that synchrony of insect associates with the southern Ips is mediated by kairomonal responses to aggregation pheromones. A large community of Coleoptera (109 species) was recorded from traps baited with southern Ips pheromones. A significant treatment effect was observed for the guilds of meristem feeders, natural enemies and woodborers. The southern Ips pheromone ipsenol was broadly attractive to meristem feeders, natural enemies and woodborers and in general blends were more attractive than individual compounds. These results demonstrate that a diverse community of Coleoptera is associated with the southern Ips and that several members of this community facilitate synchrony with kairomonal responses to southern Ips aggregation pheromones.  相似文献   

15.
Non-additive effects of multiple natural enemies on aphid populations   总被引:7,自引:0,他引:7  
The question of whether multiple natural enemies often interact to produce lower host mortality than single enemies acting alone has not yet been resolved. We compared the effects of four different combinations of natural enemies-parasitoids, predators, parasitoids plus predators, and no enemies-on caged aphid populations on marsh elder, Iva frutescens, in west-central Florida. Using starting densities of natural enemies commonly found in the field, we showed that parasitoid wasps reduced aphid population densities more than predatory ladybird beetles. The addition of predators to cages containing parasites reduced the ability of parasitoids to decrease aphid population densities. Because the experiments ran only over the course of one generation, such a reduction in the effectiveness of parasites is likely caused by interference of predators with parasitoid behavior. Parasitism in the cages containing both parasitoids and predators was reduced when compared to percent parasitism in parasitoid-only cages, but this could also be due to predation. Our experiments showed that ladybird beetles prey on parasitized aphids. Thus over the long-term, the effectiveness of parasites is impaired by the interference of predators on ovipositing parasitoids and by the predation of parasitized aphids. The effects of natural enemies in this system are clearly non-additive.  相似文献   

16.
1 Host tree terpenes can influence attraction of conifer‐infesting bark beetles to their aggregation pheromones, and both synergistic and inhibitory effects have been reported. 2 We tested a gradient of ratios of (–)‐α‐pinene, the predominant monoterpene in Norway spruce, to the pheromone of Ips typographus, a major pest of Norway spruce. 3 Attraction of I. typographus increased as the release rate of (–)‐α‐pinene increased. The two highest (–)‐α‐pinene : pheromone ratios (526 : 1 and 2595 : 1) attracted twice as many I. typographus as pheromone alone, whereas low to intermediate ratios (56 : 1, 274 : 1) did not differ from pheromone alone. 4 Our results are in agreement with a proposed model, which suggests that bark beetles display unique response profiles to host terpenes depending on the physiological condition of the host trees that they typically colonize. Ips typographus, which is an aggressive species capable of colonizing and killing healthy trees, showed an increased attraction to monoterpene : pheromone ratios, and this may be high enough to inhibit attraction of less aggressive beetle species typically colonizing dead, dying or stressed trees. 5 Attraction of associates of I. typographus was also modified by (–)‐α‐pinene. Ips duplicatus, a competitor of I. typographus, showed increased attraction to the pheromone of I. typographus across all concentrations of (–)‐α‐pinene.  相似文献   

17.
The Eucalyptus longhorned borer, Phoracantha semipunctata (F.), is native to Australia, but it has been introduced without its natural enemies into many parts of the world in which its Eucalyptus spp. host has been planted. The beetle has developed large populations in these novel habitats and has been responsible for the mortality of large numbers of trees. Although there is a considerable catalogue of the parasitoids of the beetle in Australia, limited ecological information on the assemblage of parasitoids attacking P. semipunctata is available. We removed bark from 40 felled trees, recorded gallery width and bark thickness over parasitized larvae, and removed all parasitoids. Adult size, sex, and species were recorded when the parasitoid pupae eclosed. Syngaster lepidus Brullè, Jarra phoracantha Austin, Quicke, and Marsh, J. maculipennis Austin, Quicke, and Marsh, and J. painei Austin and Dangerfield were most commonly collected. The solitary parasitoid S. lepidus preferred smaller larvae than did the gregarious Jarra spp. The two species with shorter ovipositors, J. maculipennis and J. painei, parasitized larvae under thinner bark than did the other two species with longer ovipositors. There was a significant positive correlation between host larval size and number of parasitoid pupae of the gregarious species. Also, there was a significant positive correlation between host larval size and parasitoid adult size. The ecological relationships between this assemblage of parasitoids and their beetle host may be useful in establishing an effective biological control program.  相似文献   

18.
Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.  相似文献   

19.
1. Competition and predation are important components of biotic resistance, which helps define the invasibility of an ecosystem. 2. To search for evidence of biotic resistance to the European woodwasp, Sirex noctilio Fabricius, in North America, cages were used to experimentally exclude the community of associates (natural enemies and competitors) from infested logs. Specifically, the study assessed S. noctilio brood production in pine forests in Ontario and New York, where there was a rich existing community of associates (other wood borers, bark beetles and associated fungi, and parasitoids), and in South Africa, where siricid wasps and pines are not native and a similar associate community is not present. In addition, in Ontario, associates were excluded by size, and for different periods of time to identify important associates and their temporal dynamics. 3. Evidence was found that biotic factors limit S. noctilio in North America, whereby exclusion of natural enemies and competitors had a positive influence on the abundance or presence of S. noctilio brood in Ontario and New York. This influence was absent in South Africa. 4. It is unclear which member(s) of the associated insect community in North America were most important in limiting S. noctilio brood production, although they probably acted quickly (< 2 weeks) following S. noctilio oviposition. 5. Further study is needed to determine whether associates have limited S. noctilio populations in pine forests throughout northeastern North America, and which specific natural enemies and/or competitors are important.  相似文献   

20.
1 A field experiment was carried out to test the hypothesis that treatment of Norway spruce trees with the Ips typographus-transmitted blue-stain fungus Ceratocystis polonica enhances tree resistance to later mass attack by this bark beetle. 2 Twenty-five mature trees were pretreated by inoculating a non-lethal dose of the fungus into the bark, while 18 trees served as untreated controls. Three and a half weeks after treatment a bark beetle attack was initiated by attaching dispensers with I. typographus pheromone to the tree trunks. 3 A significantly larger proportion (67%) of the control trees than of the pretreated trees (36%) were killed by the beetle attack. The result is discussed in relation to recent results regarding defence mechanisms in Norway spruce trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号