首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In an aim at developing new antiproliferative agents, new series of benzothiazole/benzoxazole and/or benzimidazole substituted pyrazole derivatives 11a-c, 12a-c and 13a-c were prepared and evaluated for their antiproliferative activity against breast carcinoma (MCF-7) and non-small cell lung cancer (A549) cell lines. The target compound, 2-acetyl-4-[(3-(1H-benzimidazol-2-yl)-phenyl]-hydrazono-5-methyl-2,4-dihydropyrazol-3-one (12a) was the most active compound against both MCF-7 and A549 cell lines with half maximal inhibitory concentrations (IC50) = 6.42 and 8.46 μM, respectively. Furthermore, the inhibitory activity of the all the target compounds against COX enzymes was recorded as a proposed mechanism for their antiproliferative activity. The obtained results revealed that the benzothiazolopyrazolone derivative 13c was the most potent COX-2 inhibitor (IC50 = 0.10 μM), while the 5-acetylbenzimidazolylpyrazolone derivative 12a was the most COX-2 selective (S.I. = 104.67) in comparison with celecoxib (COX-2 IC50 = 1.11 μM, S.I. = 13.33). Docking simulation on the most active compounds 12a and 13c had been performed to investigate the binding interaction of these active compounds within the binding site of COX-2 enzyme. Collectively, this work demonstrated the promising activity of the newly designed compounds as leads for further development into antiproliferative agents.  相似文献   

2.
Two series of thiazolidinone derivatives designing for potential EGFR and HER-2 kinase inhibitors have been discovered. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Compound 2-(2-(5-bromo-2-hydroxybenzylidene)hydrazinyl)thiazol-4(5H)-one (12) displayed the most potent inhibitory activity (IC50 = 0.09 μM for EGFR and IC50 = 0.42 μM for HER-2), comparable to the positive control erlotinib. Docking simulation was performed to position compound 12 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the thiazolidinone derivatives own high antiproliferative activity against MCF-7. Compound 12 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

3.
In order to diversify the pharmacological activity of chalcones and extend the scaffold of topoisomerase and cathepsins B and L inhibitors, we have designed and synthesized total 18 chalcone compounds and tested their biological activity. In the topoisomerase inhibition test, most analogues in group III and IV except compound 11 exhibited more efficient topoisomerase I inhibitory activity than camptothecin at 20 μM. Compounds 15, 16 and 18 in group IV showed significant cathepsin B and L inhibitory activity. Among the compounds, compound 15 was most active with IC50 values of 1.81 ± 0.05 μM on cathepsin B and 3.15 ± 0.07 μM on cathepsin L, respectively. Compound 15 also showed most potent cytotoxic activity against T47D and SNU638 cells with IC50 values of 1.37 ± 0.05 μM and 0.62 ± 0.01 μM, respectively. Overall, although more compounds should be tested and analyzed for clear SAR against topoisomerase I and cathepsin B and L, compound 15 showed consistent inhibitory ability on the tested assays, which can implicate the cytotoxic activity of compound 15 on topoisomerase I and cathepsin B and L inhibitory pathways.  相似文献   

4.
In order to identify potential calpain and cathepsin inhibitors we prepared 12 dihydroxychalcone analogues and tested their ability to inhibit μ-calpain, m-calpain, cathepsins B and L. In the calpain inhibition test, compound 10 exhibited the most active inhibitory activity against m-calpain with an IC50 value of 25.25 ± 0.901 μM. With respect to inhibition of cathepsins B and L, compound 13 exhibited the most potent inhibitory activity on cathepsin L and moderate inhibitory activity on cathepsin B with IC50 values of 2.80 ± 0.100 and 11.47 ± 0.087 μM, respectively. Our results suggest the possibility of developing dual calpain and cathepsin inhibitors by properly modulating structures and/or combining the essential aspects of the functional group effective for specific calpain and cathepsin inhibition.  相似文献   

5.
A series of novel conformationally-restricted thiourea analogs were designed, synthesized, and evaluated for their anti-HCV activity. Herein we report the synthesis, structure–activity relationships (SARs), and pharmacokinetic properties of this new class of thiourea compounds that showed potent inhibitory activities against HCV in the cell-based subgenomic HCV replicon assay. Among compounds tested, the fluorene compound 4b was found to possess the most potent activity (EC50 = 0.3 μM), lower cytotoxicity (CC50 > 50 μM), and significantly better pharmacokinetic properties compared to its corresponding fluorenone compound 4c.  相似文献   

6.
1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP–PCR–ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2 ± 0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.  相似文献   

7.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

8.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

9.
A new series of pyrrolizine derivatives 4–8c were synthesized, their structures were confirmed by spectral and elemental analyses. Cytotoxic activity of these compounds was evaluated against breast (MCF7), colon (HCT116) and liver (HEPG2) cancer cell lines using sulphorhodamine-B (SRB) assay method. All the tested compounds showed highly potent activity against MCF7 cell line with IC50 range equal 8–194 nM/ml and compound 8c was the best active one (IC50 = 8.6 nM/ml). 8b was the best active compound on both HCT116 and HEPG-2 cancer cell lines; its IC50 is 26.5 and 12.3 nM/ml respectively. Docking studies into ATP binding site of EGFR tyrosine kinase were performed to predict their scores and mode of binding to amino acids, moreover, inhibitory activity of these compounds against EGFR-TKs was evaluated; their inhibitory percent ranged from 40.4 to 97.6, compound 8c and 8b showed inhibitory activity at 97.6% and 88.4% respectively.  相似文献   

10.
A series of novel derivatives of N-cinnamoyl-l-aspartic acid were designed, synthesized, and assayed for their inhibitory activities against aminopeptidase N. The preliminary biological assay showed that compound 8c has the most potent inhibitory activity against APN with an IC50 of 11.1 ± 0.9 μM, this could be used as the lead compound in future research on anticancer agents.  相似文献   

11.
Aminopeptidase N (APN/CD13), as a zinc-containing ectoenzyme, plays a critical role in the process of tumor angiogenesis, invasion and metastasis. Through the docking-based virtual screening of chemical databases and the further activity assay, we discovered that compound 10c exhibits potent and selective inhibitory ability towards APN. In addition, a series of indoline-2,3-dione derivates have been designed and synthesized as APN inhibitors. The results of preliminary activity evaluation showed that compound 12a (IC50 = 0.074 ± 0.0026 μM) exhibited the best inhibitory activity against APN, which could be used for further anticancer agent research.  相似文献   

12.
The design and synthesis of dual aromatase inhibitors/selective estrogen receptor modulators (AI/SERMs) is an attractive strategy for the discovery of new breast cancer therapeutic agents. Previous efforts led to the preparation of norendoxifen (4) derivatives with dual aromatase inhibitory activity and estrogen receptor binding activity. In the present study, some of the structural features of the potent AI letrozole were incorporated into the lead compound (norendoxifen) to afford a series of new dual AI/SERM agents based on a symmetrical diphenylmethylene substructure that eliminates the problem of E,Z isomerization encountered with norendoxifen-based AI/SERMs. Compound 12d had good aromatase inhibitory activity (IC50 = 62.2 nM) while also exhibiting good binding activity to both ER-α (EC50 = 72.1 nM) and ER-β (EC50 = 70.8 nM). In addition, a new synthesis was devised for the preparation of norendoxifen and its analogues through a bis-Suzuki coupling strategy.  相似文献   

13.
A series of compounds which contain pyrazole, thiazole and naphthalene ring (1a7a, 1b7b, 1c7c, 1d7d) were firstly synthesized and their anti-proliferative activity, EGFR inhibitory activity, cytotoxicity and inhibition to Hela cell migration were evaluated. Compound 2-(3-(3,4-dimethylphenyl)-5-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (7d) displayed the most potent inhibitory activity (IC50 = 0.86 μM for Hela and IC50 = 0.12 μM for EGFR). Structure–activity relationship (SAR) analysis showed that the anti-proliferative activity was affected by A-ring-substituent (–OCH3 > –CH3 > –H > –Br > –Cl > –F). Docking simulation of compound 7d into EGFR active site showed that naphthalene ring of 7d with LYS721 formed two pπ bonds, which enhanced antitumor activity. Therefore, compound 7d may be developed as a potential antitumor agent.  相似文献   

14.
We previously reported a novel pyrrole derivative 1 which possesses a tetrahydropyridine group at the β-position with a proinflammatory cytokine TNFα production inhibitor. Herein, we report the synthesis and biological activity of N- and α-position substituted tetrahydropyridine derivatives. In this series, we found that compound 3o showed good inhibitory activity in vitro (inhibition of lipopolysaccharide (LPS)-induced TNFα production in human whole blood, IC50 = 0.44 μM) and compound 3i demonstrated potent inhibitory activity in vivo (inhibition of LPS-induced TNFα production in mice, ID50 = 1.42 mg/kg).  相似文献   

15.
A novel series of N-arylbenzo[d]oxazol-2-amines (4a4m) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 4f4i, 4k and 4m displayed potent inhibitory activity against α-glucosidase with IC50 values in the range of 32.49 ± 0.17–120.24 ± 0.51 μM as compared to the standard drug acarbose. Among all tested compounds, compound 4g having 4-phenoxy substitution at the phenyl ring was found to be the most active inhibitor of α-glucosidase with an IC50 value of 32.49 ± 0.17 μM. Analysis of the kinetics of enzyme inhibition indicated that compound 4g is a noncompetitive inhibitor of α-glucosidase with a Ki value of 31.33 μM. Binding interaction of compound 4g with α-glucosidase was explored by molecular docking simulation.  相似文献   

16.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

17.
A promising lead compound 1 of a benzimidazole series has been identified as a corticotropin-releasing factor 1 (CRF1) receptor antagonist. In this study, we focused on replacement of a 7-alkylamino group of 1, predicted to occupy a large lipophilic pocket of a CRF1 receptor, with an aryl group. During the course of this examination, we established new synthetic approaches to 2,7-diarylaminobenzimidazoles. The novel synthesis of 7-arylaminobenzimidazoles culminated in the identification of compounds exhibiting inhibitory activities comparable to the alkyl analog 1. A representative compound, p-methoxyanilino analog 16g, showed potent CRF binding inhibitory activity against a human CRF1 receptor and human CRF1 receptor antagonistic activity (IC50 = 27 nM, 56 nM, respectively). This compound exhibited ex vivo 125I-Tyr0 (125I-CRF) binding inhibitory activity in mouse frontal cortex, olfactory bulb, and pituitary gland at 20 mg/kg after oral administration. In this report, we discuss the structure–activity-relationship of these 7-arylamino-1H-benzimidazoles and their synthetic method.  相似文献   

18.
In this study, we synthesized a series of trans-indole-3-acrylamide derivatives (3ak) and investigated their activity for inhibition of cell proliferation against five human cancer cell lines (HeLa, MCF7, MDA-MB-231, Raji and HL-60) by MTT assay. Compound 3e showed significant antiproliferative activity against both the Raji and HL-60 cell lines with IC50 values of 9.5 and 5.1 μM, respectively. Compound 3e also exhibited moderate inhibitory activity on tubulin polymerization (IC50 = 17 μM). Flow cytometric analysis of cultured cells treated with 3e also demonstrated that the compound caused cell cycle arrest at the G2/M phase in HL-60 and HeLa cells. Moreover, 3e, the most active compound, caused an apoptotic cell death through the activation of caspase-3. Docking simulations suggested that 3e binds to the colchicine site of tubulin.  相似文献   

19.
3,3-Di(indolyl)indolin-2-ones 4a-4n were synthesized and evaluated for their in vitro α-glucosidase inhibitory activity. These newly synthesized compounds showed moderate to potent α-glucosidase inhibitory activity with IC50 range from 5.98 ± 0.11 to 145.95 ± 0.46 μM, when compared to the standard drug acarbose. Among this series of 3,3-di(indolyl)indolin-2-ones, compound 4j (5.98 ± 0.11 μM) having a 2-fluorobenzyl group on the indole ring was found to be the most active compound. Molecular docking studies showed that compound 4j have high binding affinities with the active site of α-glucosidase enzyme through hydrogen bonds, arene-cation, π-π stacking and hydrophobic interactions. This study showed these 3,3-di(indolyl)indolin-2-ones as a new class of α-glucosidase inhibitors.  相似文献   

20.
A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 μM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 μM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 μM and 0.27 μM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号