首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mycobacterium avium is the principal etiologic agent of non-tuberculous lymphadenitis in children. It is also a known pathogen for birds and other animals. Genetic typing of M. avium isolates has led to a proposal to expand the set of subspecies to include M. avium subsp. hominissuis. Isolates associated with disease in humans belong to this subspecies.

Methodology/Principal Findings

Peripheral blood mononuclear cells from six healthy blood donors were stimulated in vitro with ten isolates of M. avium avium and 11 isolates of M. avium hominissuis followed by multiplex bead array quantification of cytokines in supernatants. M. avium hominissuis isolates induced significantly more IL-10 and significantly less IL-12p70, TNF, IFN-γ and IL-17 when compared to M. avium avium isolates. All strains induced high levels of IL-17, but had very low levels of IL-12p70.

Conclusion/Significance

The strong association between M. avium subsp. hominissuis and disease in humans and the clear differences in the human immune response to M. avium subsp. hominissuis compared to M. avium subsp. avium isolates, as demonstrated in this study, suggest that genetic differences between M. avium isolates play an important role in the pathogenicity in humans.  相似文献   

2.

Background  

Mycobacterium avium includes the subspecies avium, silvaticum, paratuberculosis and hominissuis, and M. avium subspecies has been isolated from various environments all over the world including from biofilms in water distribution systems. The aim of this study was to examine isolates of M. avium subsp. avium and M. avium subsp. hominissuis of different origin for biofilm formation and to look for correlations between biofilm formation and RFLP-types, and to standardise the method to test for biofilm formation. In order to determine the best screening method, a panel of 14 isolates of M. avium subsp. avium and M. avium subsp. hominissuis, were tested for their ability to form biofilm in microtiter plates under different conditions. Subsequently, 83 additional isolates from humans, swine and birds were tested for biofilm formation. The isolates were tested for the presence of selected genes involved in the synthesis of glycopeptidolipids (GPLs) in the cell wall of M. avium, which is believed to be important for biofilm formation. Colony morphology and hsp65 sequvar were also determined.  相似文献   

3.
Mycobacterium avium is a cause of disseminated disease in AIDS patients. A need for a better understanding of possible sources and routes of transmission of this organism has arisen. This study utilized a PCR typing method designed to amplify DNA segments located between the insertion sequences IS1245 and IS1311 to compare levels of relatedness of M. avium isolates found in patients and foods. Twenty-five of 121 food samples yielded 29 mycobacterial isolates, of which 12 were M. avium. Twelve food and 103 clinical M. avium isolates were tested. A clinical isolate was found to be identical to a food isolate, and close relationships were found between two patient isolates and two food isolates. Relatedness between food isolates and patient isolates suggests the possibility that food is a potential source of M. avium infection. This study demonstrates a rapid, inexpensive method for typing M. avium, possibly replacing pulsed-field gel electrophoresis.  相似文献   

4.
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn''s disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.  相似文献   

5.
Mycobacterium avium comprises genetically related yet phenotypically distinct subspecies. Consistent with their common origin, whole-genome sequence comparisons have revealed extensive synteny among M. avium organisms. However, the sequenced strains also display numerous regions of heterogeneity that likely contribute to the diversity of the individual subspecies. Starting from a phylogenetic framework derived by multilocus sequence analysis, we examined the distribution of 25 large sequence polymorphisms across a panel of genetically defined M. avium strains. This distribution was most variable among M. avium subsp. hominissuis isolates. In contrast, M. avium subsp. paratuberculosis strains exhibited a characteristic profile, with all isolates containing a set of genomic insertions absent from other M. avium strains. The emergence of the pathogen from its putative M. avium subsp. hominissuis ancestor entailed the acquisition of approximately 125 kb of novel genetic material, followed by a second phase, characterized by reductive genomics. One genomic deletion is common to all isolates while additional deletions distinguish two major lineages of M. avium subsp. paratuberculosis. For the average strain, these losses total at least 38 kb (sheep lineage) to 90 kb (cattle lineage). This biphasic pattern of evolution, characterized by chromosomal gene acquisition with subsequent gene loss, describes the emergence of M. avium subsp. paratuberculosis and may serve as a general model for the origin of pathogenic mycobacteria.Mycobacterium avium organisms are nontuberculous mycobacteria prevalent in environmental and clinical settings. M. avium infections result in diverse diseases, including avian tuberculosis, Johne''s disease, and Lady Windermere''s syndrome. Isolates are phenotypically different and were historically classified as separate species. However, current taxonomy, based on molecular analyses, recognizes a single species, M. avium, which is divided into distinct subgroups (21, 22).At present, M. avium subsp. hominissuis denotes environmental organisms associated with opportunistic infections in humans and swine (13, 23). M. avium subsp. avium is the classical agent of tuberculosis in birds and, along with M. avium subsp. silvaticum, represents a distinct lineage of bird pathogens (22). M. avium subsp. paratuberculosis causes Johne''s disease (Paratuberculosis), a chronic granulomatous intestinal disease (5). Although primarily associated with livestock, the bacterium may infect a wide range of mammalian hosts. A number of studies, using molecular testing for the M. avium subsp. paratuberculosis-specific insertion element IS900, have found an association between the presence of M. avium subsp. paratuberculosis and Crohn''s disease in humans (1, 9).Previous studies, including bigenomic comparisons of the sequenced strains M. avium subsp. hominissuis 104 and M. avium subsp. paratuberculosis K-10 (11), have revealed inter- and intrasubspecies differences (6, 12, 15, 16, 18, 19, 26). The phenotypic heterogeneity of M. avium strains may stem from genomic differences, but in the absence of a phylogenetic framework it has been difficult to define the key variations associated with the emergence of an individual subspecies. Recently, we proposed a phylogeny for M. avium based on multilocus sequence analysis (MLSA) of 10 genes and 56 M. avium isolates. This phylogeny is consistent with the current taxonomy and indicates that M. avium subsp. paratuberculosis is a distinct, clonal lineage of M. avium (22). To better understand the evolution of this subspecies, we have now examined the distribution of large sequence polymorphisms among a genetically defined panel of M. avium strains. Our findings reveal a characteristic genomic profile for M. avium subsp. paratuberculosis and provide insight into the biphasic evolution of this successful pathogen.  相似文献   

6.
Mycobacterium avium subsp. paratuberculosis is an important animal pathogen widely disseminated in the environment that has also been associated with Crohn's disease in humans. Three M. avium subsp. paratuberculosis genomotypes are recognized, but genomic differences have not been fully described. To further investigate these potential differences, a 60-mer oligonucleotide microarray (designated the MAPAC array), based on the combined genomes of M. avium subsp. paratuberculosis (strain K-10) and Mycobacterium avium subsp. hominissuis (strain 104), was designed and validated. By use of a test panel of defined M. avium subsp. paratuberculosis strains, the MAPAC array was able to identify a set of large sequence polymorphisms (LSPs) diagnostic for each of the three major M. avium subsp. paratuberculosis types. M. avium subsp. paratuberculosis type II strains contained a smaller genomic complement than M. avium subsp. paratuberculosis type I and M. avium subsp. paratuberculosis type III genomotypes, which included a set of genomic regions also found in M. avium subsp. hominissuis 104. Specific PCRs for genes within LSPs that differentiated M. avium subsp. paratuberculosis types were devised and shown to accurately screen a panel (n = 78) of M. avium subsp. paratuberculosis strains. Analysis of insertion/deletion region INDEL12 showed deletion events causing a reduction in the complement of mycobacterial cell entry genes in M. avium subsp. paratuberculosis type II strains and significantly altering the coding of a major immunologic protein (MPT64) associated with persistence and granuloma formation. Analysis of MAPAC data also identified signal variations in several genomic regions, termed variable genomic islands (vGIs), suggestive of transient duplication/deletion events. vGIs contained significantly low GC% and were immediately flanked by insertion sequences, integrases, or short inverted repeat sequences. Quantitative PCR demonstrated that variation in vGI signals could be associated with colony growth rate and morphology.  相似文献   

7.
A peptide-mediated capture PCR for the detection of Mycobacterium avium subsp. paratuberculosis in bulk milk samples was developed and characterized. Capture of the organism was performed using peptide aMptD, which had been shown to bind to the M. avium subsp. paratuberculosis MptD protein (J. Stratmann, B. Strommenger, R. Goethe, K. Dohmann, G. F. Gerlach, K. Stevenson, L. L. Li, Q. Zhang, V. Kapur, and T. J. Bull, Infect. Immun. 72:1265-1274, 2004). Consistent expression of the MptD receptor protein and binding of the aMptD ligand were demonstrated by capturing different Mycobacterium avium subsp. paratuberculosis type I and type II strains and subsequent PCR analysis using ISMav2-based primers. The analytical sensitivity of the method was determined to be 5 × 102 CFU ml−1 for artificially contaminated milk. The specificity of aMptD binding was confirmed by culture and competitive capture assays, showing selective enrichment of M. avium subsp. paratuberculosis (at a concentration of 5 × 102 CFU ml−1) from samples containing 100- and 1,000-fold excesses of other mycobacterial species, including M. avium subsp. avium and M. avium subsp. hominissuis. The aMptD-mediated capture of M. avium subsp. paratuberculosis using paramagnetic beads, followed by culture, demonstrated the ability of this approach to capture viable target cells present in artificially contaminated milk. Surface plasmon resonance experiments revealed that the aMptD peptide is a high-affinity ligand with a calculated association rate constant of 9.28 × 103 and an association constant of 1.33 × 109. The potential use of the method on untreated raw milk in the field was investigated by testing 423 bulk milk samples obtained from different dairy farms in Germany, 23 of which tested positive. Taken together, the results imply that the peptide-mediated capture PCR might present a suitable test for paratuberculosis screening of dairy herds, as it has an analytical sensitivity sufficient for detection of M. avium subsp. paratuberculosis in bulk milk samples under field conditions, relies on a defined and validated ligand-receptor interaction, and is adaptable to routine diagnostic laboratory automation.  相似文献   

8.

Background  

Animal mycobacterioses are regarded as a potential zoonotic risk and cause economical losses world wide. M. avium subsp. hominissuis is a slow-growing subspecies found in mycobacterial infected humans and pigs and therefore rapid and discriminatory typing methods are needed for epidemiological studies. The genetic similarity of M. avium subsp. hominissuis from human and porcine origins using two different typing methods have not been studied earlier. The objective of this study was to compare the IS1245 RFLP pattern and MIRU-VNTR typing to study the genetic relatedness of M. avium strains isolated from slaughter pigs and humans in Finland with regard to public health aspects.  相似文献   

9.
The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs.  相似文献   

10.
Mycobacterium avium subsp. paratuberculosis comprises two genotypically defined groups, known as the cattle (C) and sheep (S) groups. Recent studies have reported phenotypic differences between M. avium subsp. paratuberculosis groups C and S, including growth rates, infectivity for macrophages, and iron metabolism. In this study, we investigated the genotypes and biological properties of the virulence factor heparin-binding hemagglutinin adhesin (HBHA) for both groups. In Mycobacterium tuberculosis, HBHA is a major adhesin involved in mycobacterium-host interactions and extrapulmonary dissemination of infection. To investigate HBHA in M. avium subsp. paratuberculosis, we studied hbhA polymorphisms by fragment analysis using the GeneMapper technology across a large collection of isolates genotyped by mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) and IS900 restriction fragment length polymorphism (RFLP-IS900) analyses. Furthermore, we analyzed the structure-function relationships of recombinant HBHA proteins of types C and S by heparin-Sepharose chromatography and surface plasmon resonance (SPR) analyses. In silico analysis revealed two forms of HBHA, corresponding to the prototype genomes for the C and S types of M. avium subsp. paratuberculosis. This observation was confirmed using GeneMapper on 85 M. avium subsp. paratuberculosis strains, including 67 strains of type C and 18 strains of type S. We found that HBHAs from all type C strains contain a short C-terminal domain, while those of type S present a long C-terminal domain, similar to that produced by Mycobacterium avium subsp. avium. The purification of recombinant HBHA from M. avium subsp. paratuberculosis of both types by heparin-Sepharose chromatography highlighted a correlation between their affinities for heparin and the lengths of their C-terminal domains, which was confirmed by SPR analysis. Thus, types C and S of M. avium subsp. paratuberculosis may be distinguished by the types of HBHA they produce, which differ in size and adherence properties, thereby providing new evidence that strengthens the genotypic differences between the C and S types of M. avium subsp. paratuberculosis.  相似文献   

11.
Surveys for Mycobacterium avium subsp. paratuberculosis infection in free-ranging mammals and birds were conducted on nine dairy and beef cattle farms in Wisconsin and Georgia. Specimens were collected from 774 animals representing 25 mammalian and 22 avian species. Specimens of ileum, liver, intestinal lymph nodes, and feces were harvested from the larger mammals; a liver specimen and the gastrointestinal tract were harvested from birds and small mammals. Cultures were performed by using radiometric culture and acid-fast isolates were identified by 16S/IS900/IS1311 PCR and mycobactin dependency characteristics. M. avium subsp. paratuberculosis was cultured from tissues and feces from 39 samples from 30 animals representing nine mammalian and three avian species. The prevalence of infected wild animals by premises ranged from 2.7 to 8.3% in Wisconsin and from 0 to 6.0% in Georgia. Shedding was documented in seven (0.9%) animals: three raccoons, two armadillos, one opossum, and one feral cat. The use of two highly polymorphic short sequence repeat loci for analysis of 29 of the 39 strains identified 10 alleles. One allelic pattern broadly shared in domestic ruminants (“7,5”) appeared in approximately one-third of the wildlife M. avium subsp. paratuberculosis isolates studied. Given the few cases of shedding by free-ranging animals compared to the volume of contaminated manure produced by infected domestic ruminant livestock, contamination of the farm environment by infected wildlife was negligible. Wildlife may, however, have epidemiological significance for farms where M. avium subsp. paratuberculosis recently has been eliminated or on farms free of M. avium subsp. paratuberculosis but located in the geographic vicinity of farms with infected livestock.  相似文献   

12.
Recently, we introduced a distinct Mycobacterium intracellulare INT-5 genotype, distantly related to other genotypes of M. intracellulare (INT-1 to -4). The aim of this study is to determine the exact taxonomic status of the M. intracellulare INT-5 genotype via genome-based phylogenetic analysis. To this end, genome sequences of the two INT-5 strains, MOTT-H4Y and MOTT-36Y were compared with M. intracellulare ATCC 13950T and Mycobacterium yongonense DSM 45126T. Our phylogenetic analysis based on complete genome sequences, multi-locus sequence typing (MLST) of 35 target genes, and single nucleotide polymorphism (SNP) analysis indicated that the two INT-5 strains were more closely related to M. yongonense DSM 45126T than the M. intracellulare strains. These results suggest their taxonomic transfer from M. intracellulare into M. yongonense. Finally, we selected 5 target genes (argH, dnaA, deaD, hsp65, and recF) and used SNPs for the identification of M. yongonese strains from other M. avium complex (MAC) strains. The application of the SNP analysis to 14 MAC clinical isolates enabled the selective identification of 4 M. yongonense clinical isolates from the other MACs. In conclusion, our genome-based phylogenetic analysis showed that the taxonomic status of two INT-5 strains, MOTT-H4Y and MOTT-36Y should be revised into M. yongonense. Our results also suggest that M. yongonense could be divided into 2 distinct genotypes (the Type I genotype with the M. parascrofulaceum rpoB gene and the Type II genotype with the M. intracellulare rpoB gene) depending on the presence of the lateral gene transfer of rpoB from M. parascrofulaceum.  相似文献   

13.
Reduced to near extinction in the late 1800s, a number of wood bison populations (Bison bison athabascae) have been re-established through reintroduction initiatives. Although an invaluable tool for conservation, translocation of animals can spread infectious agents to new areas or expose animals to pathogens in their new environment. Mycobacterium avium subsp. paratuberculosis, a bacterium that causes chronic enteritis in ruminants, is among the pathogens of potential concern for wood bison management and conservation. In order to inform translocation decisions, our objectives were to determine the M. avium subsp. paratuberculosis infection status of wood bison herds in Canada and to culture and genetically characterize the infective strain(s). We tested fecal samples from bison (n = 267) in nine herds using direct PCR for three M. avium subsp. paratuberculosis-specific genetic targets with different copy numbers within the M. avium subsp. paratuberculosis genome. Restriction enzyme analysis (REA) and sequencing of IS1311 were performed on seven samples from five different herds. We also evaluated a panel of different culture conditions for their ability to support M. avium subsp. paratuberculosis growth from feces and tissues of direct-PCR-positive animals. Eighty-one fecal samples (30%) tested positive using direct IS900 PCR, with positive samples from all nine herds; of these, 75% and 21% were also positive using ISMAP02 and F57, respectively. None of the culture conditions supported the growth of M. avium subsp. paratuberculosis from PCR-positive samples. IS1311 REA and sequencing indicate that at least two different M. avium subsp. paratuberculosis strain types exist in Canadian wood bison. The presence of different M. avium subsp. paratuberculosis strains among wood bison herds should be considered in the planning of translocations.  相似文献   

14.
Previously we have shown that insertion of IS1301 in the sia/ctr intergenic region (IGR) of serogroup C Neisseria meningitidis (MenC) isolates from Spain confers increased resistance against complement-mediated killing. Here we investigate the significance of IS1301 in the same location in N. meningitidis isolates from the UK. PCR and sequencing was used to screen a collection of more than 1500 meningococcal carriage and disease isolates from the UK for the presence of IS1301 in the IGR. IS1301 was not identified in the IGR among vaccine failure strains but was frequently found in serogroup B isolates (MenB) from clonal complex 269 (cc269). Almost all IS1301 insertions in cc269 were associated with novel polymorphisms, and did not change capsule expression or resistance to human complement. After excluding sequence types (STs) distant from the central genotype within cc269, there was no significant difference for the presence of IS1301 in the IGR of carriage isolates compared to disease isolates. Isolates with insertion of IS1301 in the IGR are not responsible for MenC disease in UK vaccine failures. Novel polymorphisms associated with IS1301 in the IGR of UK MenB isolates do not lead to the resistance phenotype seen for IS1301 in the IGR of MenC isolates.  相似文献   

15.
Free-living protists are ubiquitous in the environment and form a potential reservoir for the persistence of animal and human pathogens. Mycobacterium avium subsp. paratuberculosis is the cause of Johne's disease, a systemic infection accompanied by chronic inflammation of the intestine that affects many animals, including primates. Most humans with Crohn's disease are infected with this chronic enteric pathogen. Subclinical infection with M. avium subsp. paratuberculosis is widespread in domestic livestock. Infected animals excrete large numbers of robust organisms into the environment, but little is known about their ability to replicate and persist in protists. In the present study we fed laboratory cultures of Acanthamoeba polyphaga with bovine and human strains of M. avium subsp. paratuberculosis. Real-time PCR showed that the numbers of the pathogens fell over the first 4 to 8 days and recovered by 12 to 16 days. Encystment of the amoebic cultures after 4 weeks resulted in a 2-log reduction in the level of M. avium subsp. paratuberculosis, which returned to the original level by 24 weeks. Extracts of resection samples of human gut from 39 patients undergoing abdominal surgery were fed to cultures of A. polyphaga. M. avium subsp. paratuberculosis detected by nested IS900 PCR with amplicon sequencing and visualized by IS900 in situ hybridization and auramine-rhodamine staining was found in cultures derived from 13 of the patients and was still present in the cultures after almost 4 years of incubation. Control cultures were negative. M. avium subsp. paratuberculosis has the potential for long-term persistence in environmental protists.  相似文献   

16.
Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium’s pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.  相似文献   

17.

Background  

Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium) is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928) homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion.  相似文献   

18.
Mycobacterium avium complex (MAC) infection causes disseminated disease in immunocompromised hosts, such as human immunodeficiency virus (HIV)-positive patients, and pulmonary disease in persons without systemic immunosuppression, which has been increasing in many countries. In Japan, the incidence of pulmonary MAC disease caused by M. avium is about 7 times higher than that caused by M. intracellulare. To explore the bacterial factors that affect the pathological state of MAC disease caused by M. avium, we determined the complete genome sequence of the previously unreported M. avium subsp. hominissuis strain TH135 isolated from a HIV-negative patient with pulmonary MAC disease and compared it with the known genomic sequence of M. avium strain 104 derived from an acquired immunodeficiency syndrome patient with MAC disease. The genome of strain TH135 consists of a 4,951,217-bp circular chromosome with 4,636 coding sequences. Comparative analysis revealed that 4,012 genes are shared between the two strains, and strains TH135 and 104 have 624 and 1,108 unique genes, respectively. Many strain-specific regions including virulence-associated genes were found in genomes of both strains, and except for some regions, the G+C content in the specific regions was low compared with the mean G+C content of the corresponding chromosome. Screening of clinical isolates for genes located in the strain-specific regions revealed that the detection rates of strain TH135-specific genes were relatively high in specimens isolated from pulmonary MAC disease patients, while, those of strain 104-specific genes were relatively high in those from HIV-positive patients. Collectively, M. avium strains that cause pulmonary and disseminated disease possess genetically distinct features, and it suggests that the acquisition of specific genes during strain evolution has played an important role in the pathological manifestations of MAC disease.  相似文献   

19.
The clinical significance of Mycobacterium kansasii respiratory isolates is uncertain. The aims of this study were to determine the clinical relevance of M. kansasii isolates and to identify the clinical features and outcomes of M. kansasii lung disease. We reviewed the medical records of 104 patients from whom at least one respiratory M. kansasii isolate was obtained from January 2003 to July 2014 at Samsung Medical Center, South Korea. Of these 104 patients, 54 (52%) met the diagnostic criteria for nontuberculous mycobacterial lung disease; among them, 41 (76%) patients received antibiotic treatment for a median time of 15.0 months (interquartile range [IQR], 7.0–18.0 months). The remaining 13 (24%) without overt disease progression were observed for a median period of 24.0 months (IQR, 5.0–34.5 months). Patients with M. kansasii lung disease exhibited various radiographic findings of lung disease, including the fibrocavitary form (n = 24, 44%), the nodular bronchiectatic form (n = 17, 32%), and an unclassifiable form (n = 13, 24%). The fibrocavitary form was more common in patients who received treatment (n = 23, 56%), while the nodular bronchiectatic form was more common in patients with M. kansasii lung disease who did not receive treatment (n = 9, 70%). None of the patients with a single sputum isolate (n = 18) developed M. kansasii disease over a median follow-up period of 12.0 months (IQR, 4.0–26.5 months). In total, 52% of all patients with M. kansasii respiratory isolates exhibited clinically significant disease. Moreover, patients with M. kansasii lung disease displayed diverse radiographic findings in addition to the fibrocavitary form. The nodular bronchiectatic form was more common in patients with M. kansasii lung disease with an indolent clinical course. Thus, since the clinical significance of a single M. kansasii respiratory isolate is not definite, strict adherence to recommended diagnostic criteria is advised.  相似文献   

20.
Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号