首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
通过分根处理研究了部分根系供磷结黄瓜幼苗生长、植株体内的含磷量及根系酸性磷酸酶活性的影响。结果表明,20%根系缺磷(1条根所磷,4条根系地上部的生物量分别是正常生长植株的1.39倍和1.21倍。20%根系缺磷,唯心论促进其它供磷系对磷的吸收。分根处理后,20%根系缺磷不影响植物对磷营养的需要,但却表现出了R/S比增大的典型缺磷反应,说明植物感应缺磷根系起飞丰比地上部更为重要的作用。分根处理后不供磷  相似文献   

2.
以低磷条件下根系分泌酸性磷酸酶活性有显著差异的两个基因型水稻中部51和Azucena为材料,通过琼脂培养试验研究它们在无菌条件下利用植酸钠(IHP)的情况以及接种土壤微生物对水稻利用植酸钠能力的影响.结果表明:以植酸钠为磷源生长的中部51和Azucena的植株地上部干物质量、吸磷量和磷浓度均显著低于以无机磷为磷源生长的植株,植酸钠处理的水稻植株地上部吸磷量和磷浓度也均显著高于无磷处理植株,表明无菌培养条件下水稻能部分利用植酸钠.低磷条件下两个基因型水稻根系分泌酸性磷酸酶活性显著高于正常供磷处理,且低磷条件下中部51根系分泌的酸性磷酸酶活性较高,这可能是无菌条件下中部51利用植酸钠的能力高于Azucena的机理之一.高水平植酸钠处理(0.96 mmol P·L-1)下两个基因型水稻植株地上部干物质量、磷含量及磷浓度均显著高于低水平植酸钠处理(0.16 mmol P·L-1),表明底物有效性可能是影响水稻利用植酸钠能力的限制因素之一.在低水平和高水平植酸钠处理下,接种土壤微生物对两个基因型水稻植株的地上部干物质量、磷含量及磷浓度均没有显著影响,表明在本试验中接种土壤微生物并不能显著提高水稻利用植酸钠的能力.  相似文献   

3.
为探讨低磷胁迫下甘蓝型油菜酸性磷酸酶活性的基因型差异及其与磷效率的关系, 采用土培实验研究了磷高效基因型102和磷低效基因型105对有机磷和无机磷的利用及其根际土壤酸性磷酸酶活性差异; 并采用水培实验研究了甘蓝型油菜根系分泌的酸性磷酸酶及不同叶片酸性磷酸酶的活性差异. 结果表明, 低磷胁迫能诱导根系及根系分泌的酸性磷酸酶活性升高; 土培条件下, 由于酸性磷酸酶的有效性受较多因素影响, 植物的磷营养和磷吸收效率与根系分泌的酸性磷酸酶活性并不直接相关; 缺磷胁迫下重组自交系群体叶片酸性磷酸酶活性与磷利用效率呈显著正相关, 进一步表明低磷诱导的植株叶片酸性磷酸酶活性升高能促进体内磷的再利用, 从而提高磷利用效率.  相似文献   

4.
小麦根系生长对缺磷胁迫的反应   总被引:26,自引:0,他引:26  
研究了缺磷诱导小麦(Triticum aestivumL.)根系生长的反应,小麦根轴的生长与植株内外的磷浓度均呈显著的负线性关系。分根实验证明,随着低磷营养液中根比例的增加,在供磷水平不同的分根盒侧的根轴长度的均增加,这说明根轴生长是受体内磷浓度调控的。植株体内磷浓度的处理后1d开始变化,而在不同供磷水平营养液中小麦根轴长度的差异达到显著水平的时间是处理后的第8天,说明植株体内磷浓度的变化可能是小  相似文献   

5.
任安芝  高玉葆  周芳  陈磊 《生态学报》2007,27(12):5433-5440
选取感染和未感染的黑麦草为材料,在田间盆栽条件下研究内生真菌感染对宿主植物抵抗磷胁迫方面的贡献。结果表明,土壤中缺磷或内生真菌感染对黑麦草地上部生长的影响不显著,但内生真菌感染对植株地下部生长和生理指标有明显影响。缺磷条件下,内生真菌感染有助于黑麦草地下部分的生长,表现在根系总长度更长,生物量更大;同时根中酚类物质和有机酸的含量也显著高于未感染植株,但因酚类物质和有机酸总量增加的同时并未伴随着二者浓度的增加,由此推测,内生真菌在改变宿主黑麦草根系代谢活动方面的贡献有限。此外,内生真菌感染显著提高了宿主植物的磷利用效率,这可能和缺磷条件下内生真菌感染植株具有更高的酸性磷酸酶活性有关。  相似文献   

6.
柯野  谢璐  蓝林  潘俊臣  唐新莲 《广西植物》2019,39(12):1673-1680
为明确甘蔗适应低磷胁迫的生理生化机制,挖掘甘蔗对磷素的利用潜力,揭示甘蔗对低磷胁迫适应的可能机制,该研究以ROC22和ROC10两个甘蔗品种为材料,采用水培和土培的方法研究了甘蔗幼苗对难溶性磷的吸收及其在低磷胁迫下根构型和根系的生理反应。结果表明:(1)培养在以难溶性磷(Ca-P和Al-P)为磷源的培养液中的甘蔗的叶片数、地上部干重、生物量较缺磷(-P)处理显著增加,与对照(+P)的相当,甘蔗总磷积累量也显著提高,达到对照(+P)处理磷积累量的30%~77%。(2)在低磷条件下,甘蔗幼苗的根系有向土壤深层分布的趋势,根的总体积增大、最长根长变长、浅根系分布增多。(3)甘蔗幼苗在低磷环境下,根际环境明显酸化,且根系分泌物能溶解难溶性的铝磷,植株体内酸性磷酸酶的活性也明显增强。以上表明甘蔗幼苗有较强的吸收利用难溶性磷的能力,而低磷条件下根系数量增加、主根的向地性、浅根系分布增多、根际酸化以及植株体内酸性磷酸酶活性的增强可能是甘蔗幼苗适应缺磷环境的重要机制。  相似文献   

7.
不同基因型春蚕豆对磷胁迫的适应性反应   总被引:16,自引:0,他引:16  
张恩和  张新慧  王惠珍 《生态学报》2004,24(8):1589-1593
利用不同作物或品种吸收利用土壤磷能力的差异提高磷素营养效率,是解决磷资源短缺的重要生物学途径.选择西北地区重要经济作物春蚕豆作为研究对象,选用3个不同春蚕豆品种(系),采用严重缺磷的碱性灌淤土,利用盆栽法研究了在不同供磷水平下不同基因型蚕豆的根系形态特征、酸性磷酸酶活性(APase)及产量的表现, 探讨不同基因型蚕豆对低磷胁迫的适应性反应.结果表明在整个生长过程中根长、根半径、根比表面积和根冠比变动最明显的是临蚕5号,分别为36.40%,65.10%、65.27%和13. 46%;缺磷条件下,蚕豆主要通过减小根半径,增加根长、根表面积,提高根冠比及体内酸性磷酸酶活性来实现对低磷胁迫的适应;不同基因型对低磷胁迫的适应能力不同;缺磷胁迫明显诱导各基因型蚕豆体内酸性磷酸酶活性的上升,临蚕5号增加最快为24.9%,8409为7. 79%,8354为7.29%;同一基因型的不同器官中酸性磷酸酶活性大小表现为根系>茎部>叶片 .根系酸性磷酸酶和根系形态参数可分别作为蚕豆耐低磷品种筛选的选择指标;缺磷导致作物减产,并且不同的基因型作物减产的幅度不同,临蚕5号缺磷比施磷减产30.98%,而8354 的产量在两个磷水平下变化不明显,说明临蚕5号对磷素的反应最强烈,为磷低效基因型,而 8354反应比较迟钝,为磷高效基因型.  相似文献   

8.
丛枝菌根真菌(AMF)能够通过增强宿主植物根系分泌酸性磷酸酶帮助其适应低磷环境,但这种可塑性改变能否跨世代传递并影响后代适应低磷环境,仍不清楚。本研究通过亲代实验(实验1)和子代实验(实验2),研究AMF影响宿主植物蒺藜苜蓿(Medicago truncatula)根系酸性磷酸酶分泌的跨世代效应。实验1表明,土壤低磷水平下接种AMF的亲代宿主植物根系酸性磷酸酶活性显著提高,且根际土中有更高的酸性磷酸酶活性和有效磷含量。而高磷水平下,接种AMF处理的宿主植物酸性磷酸酶活性与不接种AMF的处理无显著差异。实验2表明,在当代低磷环境下,来自亲代低磷接种AMF的后代,其根系和根系分泌的酸性磷酸酶活性显著高于来自亲代低磷不接种AMF的后代,而亲代高磷处理的后代(有AMF和无AMF)之间酸性磷酸酶活性无显著差异。在当代高磷环境下,来自亲代不同处理的后代根系和根系分泌的酸性磷酸酶活性均无显著差异。本研究表明,AMF对宿主植物根系分泌酸性磷酸酶的生理可塑性能够跨世代传递,且该跨世代效应受到亲代磷水平的影响。  相似文献   

9.
三叶草根间菌丝桥传递衰亡根系中磷的作用   总被引:9,自引:0,他引:9  
应用五室方法研究了三叶草根间菌线桥传递衰亡根系中磷的作用。三叶草生长至10周切除供体地上部让根系衰亡,11周收收获样品进行分析测定。结果表明:菌线桥可以在植株间传递^32P,从而使受体三叶草地上部磷营养状况得到改善;供体植株地上部切除后有利于^32P通过菌丝桥从衰亡根系向受体植株的转移,表现为受体植株含磷量有所增加,但对植株的生长影响不大。  相似文献   

10.
间作对植株生长及养分吸收和根际环境的影响   总被引:5,自引:1,他引:4  
通过盆栽实验研究了线辣椒和玉米间作对其植株生长、矿质养分吸收、根际环境以及铁载体分泌的影响,以探索间作促进铁、磷等养分吸收利用的可能生理机制.结果表明:(1)与单作相比,间作线辣椒地上部干重降低23.0%,根系干重增加44.2%,玉米地上部和根系的干重分别增加8.7%和22.9%;间作线辣椒根冠比和根系活力分别显著提高86.4%和29.8%;间作线辣椒、玉米叶绿素含量分别显著提高12.6%和7.8%.(2)与单作相比,间作线辣椒的铁、锌、锰含量分别增加1.50倍、1.39倍和1.34%,而间作玉米则无显著变化;间作线辣椒和玉米的钙含量都显著低于相应单作,氮含量没有显著变化,但磷、钾含量显著增加.(3)间作线辣椒和玉米的根际土、非根际土的酸性磷酸酶活性及根系酸性磷酸酶活性都显著高于相应单作,而其根际土和非根际土的pH值无显著变化;间作玉米根系的铁载体分泌比单作减少32.8%,间作线辣椒根系的铁还原酶活性是单作的1.10倍.研究发现,线辣椒/玉米间作能通过影响根际生物学特征和化学过程提高植株的铁、锌、磷和钾养分水平,缓解养分胁迫,是一种很有推广价值的种植模式.  相似文献   

11.
Root Growth Inhibitors from Root Cap and Root Meristem of Zea mays L.   总被引:1,自引:0,他引:1  
A micro-assay based on the growth inhibition of root segmentsof the seminal roots of Zea mays has been used to investigatethe root-growth-inhibiting substances in root caps and meristemsrespectively of the roots of Zea mays. This micro-assay is sensitiveto 50 pg of IAA or less. Paper chromatography of the acid fractionof methanolic extracts shows the presence of one main inhibitorin root caps and a different main inhibitor in root meristems.Neither is IAA, whose presence in meristems is sometimes indicatedby small inhibitions (or stimulations) at the characteristicRf of IAA. A Commelina leaf-epidermis assay shows the presenceof one stomata-closing ABA-like substance in root caps and onein meristems, one corresponding in Rf to the main root-growthinhibitor from the root cap. The implications of these findingsfor the geotropic responses of roots is briefly discussed.  相似文献   

12.
Primary roots of 98 species from different families of monocotyledonous and dicotyledonous plants and adventitious roots obtained from bulbs and rhizomes of 24 monocot species were studied. Root growth rate, root diameter, length of the meristem and elongation zones, number of meristematic cells in a file of cortical cells, and length of fully elongated cells were evaluated in each species after the onset of steady growth. The mitotic cycle duration and relative cell elongation rate were calculated. In all species, the meristem length was approximately equal to two root diameters. When comparing different species, the rate of root growth increased with a larger root diameter. This was due to an increase in the number of meristematic cells in a row and, to a lesser degree, to a greater length of fully elongated cells. The duration of the mitotic cycle and the relative cell elongation rate did not correlate with the root diameter. It is suggested that the meristem size depends on the level of nutrient inflow from upper tissues, and is thereby controlled during further growth.  相似文献   

13.
Shoot and Root Growth of Lettuce Seedlings Following Root Pruning   总被引:1,自引:0,他引:1  
Hydroponically-grown lettuce seedlings with 13 to 18 primarylateral roots were root pruned in one of four ways; the rootapices were removed from the main root only (1) or from allthe root membranes (2), or half the total root system was removedwith the remaining apices left intact (3) or removed (4). Duringthe following 8 d the rate of lateral root production on prunedplants increased, decreased, and then increased again relativeto the unpruned control. Conversely, the rate of increase intotal root length decreased, then increased, and if all theroot apices were removed, declined again, prior to increasingon day 8. These changes in the rates of lateral root productionand growth resulted in similar, but less pronounced, patternsof change in the total root length and the total number of lateralroots with time. The changes in total lateral root productionwere related to differences in the rates of primary, secondaryand tertiary root emergence. The shoot d. wt of the most severely root pruned seedlings (treatment4) fell below that of the control 4 d after pruning and remainedlower than the control on day 14, whereas the root d. wt hadrecovered to the control level by day 6. The root: shoot d.wt ratio, which was reduced by root pruning, rose above thatof the control on days 6 and 8. Lactuca sativa L., lettuce, root pruning, root growth, lateral root, nutrient solution  相似文献   

14.
The effect of coumarin on the root growth was studied on roots from intact plants, isolated roots and isolated elongating zones. All material was cultivated aseptically. A new method was developed for sterile culture of intact plants in flowing nutrient medium. The effects on cell division and cell elongation were studied separately. An effect on both these processes can be established at all concentrations that affect the root growth. The concentration-growth curve has an “all-or-none” appearance. Coumarin inhibits the transverse divisions in all cell layers; the perivascular layers seem to be more sensitive. Also the mitotic activity that is involved in the initiation of laterals is inhibited. The longitudinal divisions within the stele are enhanced. Coumarin decreases the cell length in all cell layers, most likely with greater relative sensitivity in the perivascular layers. Studies on the time course of cell elongation in both attached corn roots and isolated elongating zones reveal that the decrease in cell length is caused exclusively by a decrease in the maximal rate of elongation, whereas the duration of the elongation is unchanged. With each decrease of the cell length, the cell diameter is increased. The two changes are intimately connected within the greater part of the active region of concentration. Studies on the time course of the radial expansion in isolated elongating zones show a strict connection in time between cell elongation and radial expansion. The radial expansion leads to unchanged or increased cell volume at most concentrations and for most cell types. Coumarin causes an inhibition of the longitudinally directed processes and a stimulation of the radially directed ones. This is interpreted as indicating that the formative system is disengaged or reorientated, i.e., the polarity of the cells is changed. Through experiments partly with isolated elongating zones and partly by disruption of the linear phase by means of mannitol, the inhibitory effect of coumarin could be localized to the first non-linear phase of the elongation. The results were compared with earlier findings in the literature. The microtubuli are proposed as a conceivable main Component in the formative system common to both cell division and cell elongation. These are assumed to be affected by changes in the SH/SS balance produced by coumarin.  相似文献   

15.
NG  YUK-KIU; MOORE  RANDY 《Annals of botany》1985,55(3):387-394
The effect of ABA on root growth, secondary-root formation androot gravitropism in seedlings of Zea mays was investigatedby using Fluridone-treated seedlings and a viviparous mutant,both of which lack carotenoids and ABA. Primary roots of seedlingsgrown in the presence of Fluridone grew significantly slowerthan those of control (i.e. untreated) roots. Elongation ofFluridone-treated roots was inhibited significantly by the exogenousapplication of 1 mM ABA. Exogenous application of 1 µMand 1 nM ABA had either no effect or only a slight stimulatoryeffect on root elongation, depending on the method of application.The absence of ABA in Fluridone-treated plants was not an importantfactor in secondary-root formation in seedlings less than 9–10d old. However, ABA may suppress secondary-root formation inolder seedlings, since 11-d-old control seedlings had significantlyfewer secondary roots than Fluridone-treated seedlings. Rootsof Fluridone-treated and control seedlings were graviresponsive.Similar data were obtained for vp-9 mutants of Z. mays, whichare phenotypically identical to Fluridone-treated seedlings.These results indicate that ABA is necessary for neither secondary-rootformation nor for positive gravitropism by primary roots. Zea mays, gravitropism, carotenoid-deficient, Fluridone, root growth, vp-9 mutant  相似文献   

16.
Effect of Root Moisture Content and Diameter on Root Tensile Properties   总被引:1,自引:0,他引:1  
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.  相似文献   

17.
Root membrane potentials were measured by interposing a plantroot between two KCI solutions of different concentrations.The potentials measured across the two calomel electrodes werefound to depend on the position of the root. The potentialswere found to be lower when the root tip rather than the rootbase was in contact with the more concentrated solution. Thisindicates that the two parts of the root do not have the samein transport properties. Using an approximate theoretical treatmentthe observed potentials could be accounted for.  相似文献   

18.
对7种豆科植物接种根瘤菌后根部的形态和内部结构进行了研究.结果表明:根瘤菌可诱发根瘤形成部位根段的根毛增生、形变和根外层传递细胞的发育.根外层传递细胞发生在根毛伸长形变时期,一直可持续到根瘤形成,传递细胞壁内突发育过程是先由根表皮细胞外切向壁一侧细胞质膜向细胞质内陷形成囊状壁傍体,次生细胞壁物质在初生壁上沉积并逐渐充满囊状体,最终形成传递细胞典型的壁内突结构.根瘤形成过程中根外层传递细胞的诱发与培养方式(水培、固培)没有直接关系.在不接菌的对照苗的根段内未发现壁内突结构,研究证明豆科植物根外层传递细胞的形成是由根瘤菌诱导所致.  相似文献   

19.
Root Density and Water Potential Gradients near the Plant Root   总被引:3,自引:1,他引:2  
The models of Gardner (1960) and Cowan (1965) for water transferto the plant root are used to estimate the differences in waterpotential between the root and the bulk soil for a wide rangeof root densities and water extraction rates at a series ofmatric potentials for a Yolo light clay. For root densities and extraction rates reported both in theliterature and in this paper there is good evidence to suggestthat the large potential gradients originally predicted by Gardnerand Cowan are restricted to situations involving very low rootdensities and high extraction rates in relatively dry soil.  相似文献   

20.
Root Caps and Rhizosphere   总被引:15,自引:0,他引:15  
In this paper we discuss recent work on the physiological, molecular, and mechanical mechanisms that underlie the capacity of root caps to modulate the properties of the rhizosphere and thereby foster plant growth and development. The root cap initially defines the rhizosphere by its direction of growth, which in turn occurs in response to gradients in soil conditions and gravity. The ability of the root cap to modulate its environment is largely a result of the release of exudates and border cells, and so provides a potential method to engineer the rhizosphere. Factors affecting the release of border cells from the outer surface of the root cap, and function of these cells and their exudates in the rhizosphere, are considered in detail. Release of border cells into the rhizosphere depends on soil matric potential and mechanical impedance, in addition to a host of other environmental conditions. There is good evidence of unidentified feedback signals between border cells and the root cap meristem, and some potential mechanisms are discussed. Root border cells play a significant mechanical role in decreasing frictional resistance to root penetration, and a conceptual model for this function is discussed. Root and border cell exudates influence specific interactions between plant hosts and soil organisms, including pathogenic fungi. The area of exudates and border cell function in soil is an exciting and developing one that awaits the production of appropriate mutant and transgenic lines for further study in the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号