首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

2.
3.
Symmetrical 30-60% stenosis in a common carotid artery under unsteady flow condition for Newtonian and six non-Newtonian viscosity models are investigated numerically. Results show power-law model produces higher deviations, in terms of velocity and wall shear stress in comparison with other models while generalized power-law and modified-Casson models are more prone to Newtonian state. Comparing separation length of recirculation region at different critical points of cardiac cycle confirms the necessity of considering blood flow in unsteady mode. Increasing stenosis intensity causes flow patterns more disturbed downstream of the stenosis and WSS appear to develop remarkably at the stenosis throat.  相似文献   

4.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

5.
Laser Doppler anemometry experiments and finite element simulations of steady flow in a three dimensional model of the carotid bifurcation were performed to investigate the influence of non-Newtonian properties of blood on the velocity distribution. The axial velocity distribution was measured for two fluids: a non-Newtonian blood analog fluid and a Newtonian reference fluid. Striking differences between the measured flow fields were found. The axial velocity field of the non-Newtonian fluid was flattened, had lower velocity gradients at the divider wall, and higher velocity gradients at the non-divider wall. The flow separation, as found with the Newtonian fluid, was absent. In the computations, the shear thinning behavior of the analog blood fluid was incorporated through the Carreau-Yasuda model. The viscoelastic properties of the fluid were not included. A comparison between the experimental and numerical results showed good agreement, both for the Newtonian and the non-Newtonian fluid. Since only shear thinning was included, this seems to be the dominant non-Newtonian property of the blood analog fluid under steady flow conditions.  相似文献   

6.
S Nandy  J M Tarbell 《Biorheology》1987,24(5):483-500
Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.  相似文献   

7.
This paper presents Computational fluid dynamic (CFD) analysis of blood flow in three different 3-D models of left coronary artery (LCA). A comparative study of flow parameters (pressure distribution, velocity distribution and wall shear stress) in each of the models is done for a non-Newtonian (Carreau) as well as the Newtonian nature of blood viscosity over a complete cardiac cycle. The difference between these two types of behavior of blood is studied for both transient and steady states of flow. Additionally, flow parameters are compared for steady and transient boundary conditions considering blood as non-Newtonian fluid. The study shows that the highest wall shear stress (WSS), velocity and pressure are found in artery having stenosis in all the three branches of LCA. The use of Newtonian blood model is a good approximation for steady as well as transient blood flow boundary conditions if shear rate is above 100 s-1. However, the assumption of steady blood flow results in underestimating the values of flow parameters such as wall shear stress, pressure and velocity.  相似文献   

8.
Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.  相似文献   

9.
This study looks at blood flow through four different right coronary arteries, which have been reconstructed from bi-plane angiograms. Five non-Newtonian blood models, as well as the usual Newtonian model of blood viscosity, are used to study the wall shear stress in each of these arteries at a particular point in the cardiac cycle. It was found that in the case of steady flow in a given artery, the pattern of wall shear stress is consistent across all models. The magnitude of wall shear stress, however, is influenced by the model used and correlates with graphs of shear stress versus strain for each model. For mid-range velocities of around 0.2 m s(-1) the models are virtually indistinguishable. Local and global non-Newtonian importance factors are introduced, in an attempt to quantify the types of flows where non-Newtonian behaviour is significant. It is concluded that, while the Newtonian model of blood viscosity is a good approximation in regions of mid-range to high shear, it is advisable to use the Generalised Power Law model (which tends to the Newtonian model in those shear ranges in any case) in order to achieve better approximation of wall shear stress at low shear.  相似文献   

10.
A non-Newtonian constitutive equation for blood has been introduced in this paper. Using this equation, blood flow attributes such as velocity profiles, flowrate, pressure gradient, and wall shear stress in both straight and stenotic (constricted) tubes have been examined. Results showed that compared with Newtonian flow at the same flowrate, the non-Newtonian normally features larger pressure gradient, higher wall shear stress, and different velocity profile, especially in stenotic tube. In addition, the non-Newtonian stenotic flow appears to be more stable than Newtonian flow.  相似文献   

11.
This study looks at pulsatile blood flow through four different right coronary arteries, which have been reconstructed from biplane angiograms. A non-Newtonian blood model (the Generalised Power Law), as well as the usual Newtonian model of blood viscosity, is used to study the wall shear stress in each of these arteries over the entire cardiac cycle. The difference between Newtonian and non-Newtonian blood models is also studied over the whole cardiac cycle using the recently generalised global non-Newtonian importance factor. In addition, the flow is studied by considering paths of massless particles introduced into the flow field. The study shows that, when studying the wall shear stress distribution for transient blood flow in arteries, the use of a Newtonian blood model is a reasonably good approximation. However, to study the flow within the artery in greater detail, a non-Newtonian model is more appropriate.  相似文献   

12.
Y I Cho  K R Kensey 《Biorheology》1991,28(3-4):241-262
Effects of the non-Newtonian viscosity of blood on a flow in a coronary arterial casting of man were studied numerically using a finite element method. Various constitutive models were examined to model the non-Newtonian viscosity of blood and their model constants were summarized. A method to incorporate the non-Newtonian viscosity of blood was introduced so that the viscosity could be calculated locally. The pressure drop, wall shear stress and velocity profiles for the case of blood viscosity were compared for the case of Newtonian viscosity (0.0345 poise). The effect of the non-Newtonian viscosity of blood on the overall pressure drop across the arterial casting was found to be significant at a flow of the Reynolds number of 100 or less. Also in the region of flow separation or recirculation, the non-Newtonian viscosity of blood yields larger wall shear stress than the Newtonian case. The origin of the non-Newtonian viscosity of blood was discussed in relation to the viscoelasticity and yield stress of blood.  相似文献   

13.
An experimental investigation of the wall shear stress distribution downstream of a backward-facing step is carried out. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non-Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non-Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non-Newtonian Carreau-Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau-Yasuda model.  相似文献   

14.
Pulsatile flow in an axisymmetric rigid-walled model of an abdominal aorta aneurysm was analyzed numerically for various aneurysm dilations using physiologically realistic resting waveform at time-averaged Reynolds number of 300 and peak Reynolds number of 1607. Discretization of the governing equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. Our findings indicate that the velocity fields are significantly affected by non-Newtonian properties in pathologically altered configurations. Non-Newtonian fluid shear stress is found to be greater than Newtonian fluid shear stress during peak systole. Further, the maximum shear stress is found to occur near the distal end of AAA during peak systole. The impact of non-Newtonian blood flow characteristics on pressure compared to Newtonian model is found insignificant under resting conditions. Viscous and inertial forces associated with blood flow are responsible for the changes in the wall that result in thrombus deposition and dilation while rupture of AAA is more likely determined by much larger mechanical stresses imposed by pulsatile pressure on the wall of AAA.  相似文献   

15.
The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal side of the stenosis, near the outer wall in the curved artery with no stenosis. The lumen area near the inner wall distal to the stenosis region experienced a lower WSS during the entire cardiac cycle. Among the factors of stenosis size, blood viscosity, and flow rate, the size of the stenosis has the most significant effect on the spatial and temporal WSS distributions qualitatively and quantitatively.  相似文献   

16.
The pulsatile flow in an anatomically realistic compliant human carotid bifurcation was simulated numerically. Pressure and mass flow waveforms in the carotid arteries were obtained from an individual subject using non-invasive techniques. The geometry of the computational model was reconstructed from magnetic resonance angiograms. Maps of time-average wall shear stress, contours of velocity in the flow field as well as wall movement and tensile stress on the arterial wall are all presented. Inconsistent with previous findings from idealised geometry models, flow in the carotid sinus is dominated by a strong helical flow accompanied by a single secondary vortex motion. This type of flow is induced primarily by the asymmetry and curvature of the in vivo geometry. Flow simulations have been carried out under the rigid wall assumption and for the compliant wall, respectively. Comparison of the results demonstrates the quantitative influence of the vessel wall motion. Generally there is a reduction in the magnitude of wall shear stress, with its degree depending on location and phase of the cardiac cycle. The region of slow or reversed flow was greater, in both spatial and temporal terms in the compliant model, but the global characteristics of the flow and stress patterns remain unchanged. The analysis of mechanical stresses on the vessel surface shows a complicated stress field. Stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb. These are also regions of low wall shear stress. The comparison of computed and measured wall movement generally shows good agreement.  相似文献   

17.
The results of computational simulations may supplement MR and other in vivo diagnostic techniques to provide an accurate picture of the hemodynamics in particular vessels, which may help demonstrate the risks of embolism or plaque rupture posed by particular plaque deposits. In this study, a model based on an endarterectomy specimen of the plaque in a carotid bifurcation was examined. The flow conditions include steady flow at Reynolds numbers of 300, 600, and 900 as well as unsteady pulsatile flow. Both dynamic pressure and wall shear stress are very high, with shear values up to 70 N/m2, proximal to the stenosis throat in the internal carotid artery, and both vary significantly through the flow cycle. The wall shear stress gradient is also strong along the throat. Vortex shedding is observed downstream of the most severe occlusion. Two turbulence models, the Chien and Goldberg varieties of k-epsilon, are tested and evaluated for their relevance in this geometry. The Chien model better captures phenomena such as vortex shedding. The flow distal to stenosis is likely transitional, so a model that captures both laminar and turbulent behavior is needed.  相似文献   

18.
Blood flow dynamics in saccular aneurysm models of the basilar artery   总被引:1,自引:0,他引:1  
Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This paper describes the flow dynamics in two representative models of a terminal aneurysm of the basilar artery under Newtonian and non-Newtonian fluid assumptions, and compares their hemodynamics with that of a healthy basilar artery. Virtual aneurysm models are investigated numerically, with geometric features defined by beta = 0 deg and beta = 23.2 deg, where beta is the tilt angle of the aneurysm dome with respect to the basilar artery. The intra-aneurysmal pulsatile flow shows complex ring vortex structures for beta = 0 deg and single recirculation regions for beta = 23.2 deg during both systole and diastole. The pressure and shear stress on the aneurysm wall exhibit large temporal and spatial variations for both models. When compared to a non-Newtonian fluid, the symmetric aneurysm model (beta = 0 deg) exhibits a more unstable Newtonian flow dynamics, although with a lower peak wall shear stress than the asymmetric model (beta = 23.2 deg). The non-Newtonian fluid assumption yields more stable flows than a Newtonian fluid, for the same inlet flow rate. Both fluid modeling assumptions, however, lead to asymmetric oscillatory flows inside the aneurysm dome.  相似文献   

19.
Hemodynamic in abdominal aorta bifurcation was investigated in a real case using computational fluid dynamics. A Newtonian and non-Newtonian (Walburn-Schneck) viscosity models were compared. The geometrical model was obtained by 3D reconstruction from CT-scan and hemodynamic parameters obtained by laser-Doppler. Blood was assumed incompressible fluid, laminar flow in transient regime and rigid vessel wall. Finite volume-based was used to study the velocity, pressure, wall shear stress (WSS) and viscosity throughout cardiac cycle. Results obtained with Walburn-Schneck’s model, during systole, present lower viscosity due to shear thinning behavior. Furthermore, there is a significant difference between the results obtained by the two models for a specific patient. During the systole, differences are more pronounced and are preferably located in the tortuous regions of the artery. Throughout the cardiac cycle, the WSS amplitude between the systole and diastole is greater for the Walburn-Schneck’s model than for the Newtonian model. However, the average viscosity along the artery is always greater for the non-Newtonian model, except in the systolic peak. The hemodynamic model is crucial to validate results obtained with CFD and to explore clinical potential.  相似文献   

20.
The flow pattern in the left main coronary artery has been calculated using an idealized geometry and by numerically solving the full Navier-Stokes equations for a Newtonian fluid. Two different forms for the entrance velocity profile were used, one a time-varying, flat profile and the other a time-varying, less flat velocity profile. The results obtained demonstrate the presence of secondary motions for conditions simulating flow in the left main coronary artery, with maximum secondary flow velocities being on the order of three to four percent of the maximum axial velocity. This secondary flow phenomenon has an important influence on the wall shear stress distribution, in spite of the fact that there is virtually no alteration in the axial velocity profile. The maximum ratio of the outer wall shear stress to that on the inner wall is 1.4 at a Reynolds number of Re = 270, and it increases with increasing Reynolds number, reaching a value of 1.7 at Re = 810. Although there are significant differences in the results in the immediate vicinity of the inlet for the two different forms of the entrance velocity profile used, this difference does not persist far into the tube. Independent of the choice of the entrance velocity profile, it appears that there will be significant secondary flow effects on the wall shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号