首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
3.
Expression vectors that yield mono-, di-, and tricistronic mRNAs upon transfection of COS-1 cells were used to assess the influence of the 5' nontranslated regions (5'NTRs) on translation of reporter genes. A segment of the 5'NTR of encephalomyocarditis virus (EMCV) allowed translation of an adjacent downstream reporter gene (CAT) regardless of its position in the mRNAs. A deletion in the EMCV 5'NTR abolishes this effect. Poliovirus infection completely inhibits translation of the first cistron of a dicistronic mRNA that is preceded by the capped globin 5'NTR, whereas the second cistron preceded by the EMCV 5'NTR is still translated. We conclude that the EMCV 5'NTR contains an internal ribosomal entry site that allows cap-independent initiation of translation. mRNA containing the adenovirus tripartite leader is also resistant to inhibition of translation by poliovirus.  相似文献   

4.
The 5' cap and 3' poly(A) tail of eukaryotic mRNAs cooperate to stimulate synergistically translation initiation in vivo, a phenomenon observed to date in vitro only in translation systems containing endogenous competitor mRNAs. Here we describe nuclease-treated rabbit reticulocyte lysates and HeLa cell cytoplasmic extracts that reproduce cap-poly(A) synergy in the absence of such competitor RNAs. Extracts were rendered poly(A)-dependent by ultracentrifugation to partially deplete them of ribosomes and associated initiation factors. Under optimal conditions, values for synergy in reticulocyte lysates approached 10-fold. By using this system, we investigated the molecular mechanism of poly(A) stimulation of translation. Maximal cap-poly(A) cooperativity required the integrity of the eukaryotic initiation factor 4G-poly(A)-binding protein (eIF4G-PABP) interaction, suggesting that synergy results from mRNA circularization. In addition, polyadenylation stimulated uncapped cellular mRNA translation and that driven by the encephalomyocarditis virus internal ribosome entry segment (IRES). These effects of poly(A) were also sensitive to disruption of the eIF4G-PABP interaction, suggesting that 5'-3' end cross-talk is functionally conserved between classical mRNAs and an IRES-containing mRNA. Finally, we demonstrate that a rotaviral non-structural protein that evicts PABP from eIF4G is capable of provoking the shut-off of host cell translation seen during rotavirus infection.  相似文献   

5.
Hepatitis C virus (HCV) is a positive-sense RNA virus approximately 9600 bases long. An internal ribosomal entry site (IRES) spans the 5' nontranslated region, which is the most conserved and highly structured region of the HCV genome. In this study, we demonstrate that nucleotides 428-442 of the HCV core-coding sequence anneal to nucleotides 24-38 of the 5'NTR, and that this RNA-RNA interaction modulates IRES-dependent translation in rabbit reticulocyte lysate and in HepG2 cells. The inclusion of the core-coding sequence (nucleotides 428-442) significantly suppressed the translational efficiency directed by HCV IRES in dicistronic reporter systems, and this suppression was relieved by site-directed mutations that blocked the long-range interaction between nucleotides 24-38 and 428-442. These findings suggest that the long-range interaction between the HCV 5'NTR and the core-coding nucleotide sequence down-regulate cap-independent translation via HCV IRES. The modulation of protein synthesis by long-range RNA-RNA interaction may play a role in the regulation of viral gene expression.  相似文献   

6.
Polypyrimidine tract-binding protein (PTB) has been previously shown to physically interact with the hepatitis C virus (HCV) RNA genome at its 5'- and 3'-noncoding regions. Using high affinity SELEX RNA molecules, we present evidence for the functional requirement of PTB during HCV internal ribosome entry site (IRES)-controlled translation initiation. This study was carried out in rabbit reticulocyte translation lysates in which the HCV IRES-driven reporter RNA was introduced along with the PTB-specific SELEX RNA molecules. The SELEX RNAs specifically inhibited the HCV IRES function in the context of mono- and dicistronic mRNAs. The cap-dependent translation of a reporter (chloramphenicol acetyltransferase) RNA or naturally capped brome mosaic virus RNA, however, was not affected by the presence of SELEX during in vitro translation assays. The SELEX-mediated inhibition of the HCV IRES is shown to be relieved by the addition of recombinant human PTB in an add-back experiment. The in vivo requirement of PTB was further confirmed by cotransfection of Huh7 cells with reporter RNA and PTB-specific SELEX RNA. The HCV IRES activity was inhibited by the SELEX RNA in these cells, but not by an unrelated control RNA. Together, these results demonstrate the functional requirement of cellular PTB in HCV translation and further support the feasible use of SELEX RNA strategy in demonstrating the functional relevance of cellular protein(s) in complex biological processes.  相似文献   

7.
8.
Internal ribosome entry site within hepatitis C virus RNA.   总被引:71,自引:21,他引:50       下载免费PDF全文
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates prepared from HeLa S3 cells or rabbit reticulocytes, and the translation products were detected by anti-gp35 antibodies. The data indicate that protein synthesis starts at the fourth AUG, which was the initiator AUG at position 333 of the HCV RNA used in this study. Efficiency of translation of the capped methylated RNA appeared to be similar to that of the capped unmethylated RNA. However, a capped methylated RNA showed a much higher activity as mRNA than did the capped unmethylated RNA in rabbit reticulocyte lysates when the RNA lacked a nucleotide sequence upstream of position 267. The results strongly suggest that HCV RNA carries an internal ribosome entry site (IRES). Artificial mono- and dicistronic mRNAs were prepared and used to identify the region that carried the IRES. The results indicate that the sequence between nucleotide positions 101 and 332 in the 5' untranslated region of HCV RNA plays an important role in efficient translation. Our data suggest that the IRES resides in this region of the RNA. Furthermore, an IRES in the group II HCV RNA was found to be more efficient than that in the group I HCV RNA.  相似文献   

9.
Polypyrimidine tract-binding protein inhibits translation of bip mRNA   总被引:11,自引:0,他引:11  
Translation initiation of human Bip mRNA is directed by an internal ribosomal entry site (IRES) located in the 5' non-translated region. No trans-acting factor possibly involved in this process has as of yet been identified. For the encephalomyocarditis virus and other picornaviruses, polypyrimidine tract-binding protein (PTB) has been found to enhance the translation through IRES elements, probably by interaction with the IRES structure. Here, we report that PTB specifically binds to the central region (nt 50-117) of the Bip 5' non-translated region. Addition of purified PTB to rabbit reticulocyte lysate and overexpression of PTB in Cos-7 cells selectively inhibited Bip IRES-dependent translation. On the other hand, depletion of endogenous PTB or addition of an RNA interacting with PTB enhanced the translational initiation directed by Bip IRES. These suggest that PTB can either enhance or inhibit IRES-dependent translation depending on mRNAs.  相似文献   

10.
Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号