首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Iron is an essential element for metabolic processes intrinsic to life, but the properties that make iron a necessity also make it potentially deleterious. To avoid harm, iron homeostasis is achieved through iron transport, storage and regulatory proteins. The functions of some of these molecules are well described, for example transferrin and ferritin, whereas the roles of others remain unclear. The past decade has seen the identification of new molecules involved in iron metabolism, such as divalent metal transporter-1, and hepcidin. The present review aims at surveying the studies carried out on some of the most important genes involved in transport and storage of iron in Antarctic Notothenioidei, a dominating fish group endowed of a number of striking adaptive characters, including reduced (or absence of) hematocrit. This unique peculiarity among vertebrates makes this fish group a suitable system to studying the relationship between hemoglobin and iron metabolism and to understanding the adaptive changes occurred in Antarctic fish metabolism during their evolution to avoid the deleterious effects of iron overload in the absence of hemoglobin. The results summarised here indicate that the loss of hemoglobin in the most specialized group of Antarctic notothenioids, belonging to the Channychthyidae family, is accompanied by remodulation of the iron metabolism.  相似文献   

2.
Iron is essential for cell survival and regulates many cell functions. In the context of the immune response, iron-related metabolism is tightly controlled in activated lymphocytes as well as in cells of the innate immunity. More precisely, for dendritic cells (DCs), which are the key cell type in the development of a specific immune response, the importance of iron absorption was recently unravelled by showing that depletion of iron inhibits the maturation of DCs. On this basis, we studied in detail the expression of iron transport proteins and HFE in DCs. We found that iron uptake in this cell type is mediated by divalent-metal transporter 1 (DMT1) and transferrin receptor-1 (TfR) whereas Ferroportin-1 is very weakly expressed. HFE that regulates TfR's activity is also detected at the mRNA level. The expression of DMT1 and HFE barely varies upon endotoxin-induced maturation but TfR is up-regulated and the iron export molecule Ferroportin-1 is down-regulated. As opposed to MHC class II molecules, the intracellular localization of TfR is not changed during maturation. Our results indicate that the uptake of iron during DCs development and maturation is mediated by a strong expression of iron-uptake molecules such as DMT1 and TfR as well as a down-regulation of iron export molecules such as Ferroportin-1.  相似文献   

3.
Iron regulatory proteins (IRP1 and 2) function as translational regulators that coordinate the cellular iron metabolism of eukaryotes by binding to the mRNA of target genes such as the transferrin receptor or ferritin. In addition to IRP2, IRP1 serves as sensor of reactive oxygen species (ROS). As iron and oxygen are essential but potentially toxic constituents of most organisms, ROS-mediated modulation of IRP1 activity may be an important regulatory element in dissecting iron homeostasis and oxidative stress. The responses of IRP1 towards reactive oxygen species are compartment-specific and rather complex: H2O2 activates IRP1 via a signaling cascade that leads to upregulation of the transferrin receptor and cellular iron accumulation. Contrary, superoxide inactivates IRP1 by a direct chemical attack being limited to the intracellular compartment. In particular, activation of IRP1 by H2O2 has established a new regulatory link between inflammation and iron metabolism with new clinical implications. This mechanism seems to contribute to the anemia of chronic disease and inflammation-mediated iron accumulation in tissues. In addition, the cytotoxic side effects of redox-cycling anticancer drugs such as doxorubicin may involve H2O2-mediated IRP1 activation. These molecular insights open up new therapeutic strategies for the clinical management of chronic inflammation and drug-mediated cardiotoxicity.  相似文献   

4.
Iron metabolism   总被引:2,自引:0,他引:2  
The understanding of iron metabolism at the molecular level has been enormously expanded in recent years by new findings about the functioning of transferrin, the transferrin receptor and ferritin. Other recent developments include the discovery of the hemochromatosis gene HFE, identification of previously unknown proteins involved in iron transport, divalent metal transporter 1 and stimulator of Fe transport, and expanded insights into the regulation and expression of proteins involved in iron metabolism. Interactions among principal participants in iron transport have been uncovered, although the complexity of such interactions is still incompletely understood. Correlated efforts involving techniques and concepts of crystallography, spectroscopy and molecular biology applied to cellular processes have been, and should continue to be, particularly revealing.  相似文献   

5.
Cellular regulation of iron assimilation   总被引:9,自引:0,他引:9  
Cells of plants, most microorganisms, and animals require well-defined amounts of iron for survival, replication, and differentiation. The metal is an important component of such processes as synthesis of DNA, RNA, and chlorophyll; electron transport; oxygen metabolism; and nitrogen fixation. Because of the insolubility of iron in aerobic environments at neutral and alkaline pH values, cells have had to devise specific strategies to assimilate the metal. These include (1) development of systems for reducing ferric ions to the more soluble ferrous ions at the cell surface, (2) employment of small carrier molecules (termed siderophores) that have high affinity for ferric ions and receptor proteins for the ferrated molecules, and (3) use of transferrin and other proteins that can transport ferric ions. Excessive amounts of iron are toxic, however, and intracellular storage capacity is limited and efflux mechanisms generally are lacking. Thus, cells have had to develop methods of preventing over-accumulation of the metal. These include use of (1) oxygen to convert ferrous to ferric ions, (2) small molecules that can bind ferrous ions, termed siderophraxes, and (3) proteins that, when combined with ferrous ions, repress the expression of iron transport genes. Often, one organism can prevent growth of neighbors by restricting their access to iron. In other cases, cells assist each other by sharing iron acquisition systems or by restricting influx of excess iron. Homeostatic control of other essential trace metals also is required for optimal cell function. Nevertheless, since iron thus far has received most attention, it serves as the model of mineral metabolism. Moreover, many of the observations made on control of iron metabolism suggest possible applications in prevention and management of plant and animal infections as well as of neoplastic diseases, arthropathy, and cardiomyopathy. This review will focus on (1) problems at the cellular level of iron acquisition, storage, and exclusion; and (2) the strategies devised by cells of plants, microorganisms, and animals to solve these problems.  相似文献   

6.
The reticuloendothelial system plays a major role in iron metabolism. Despite this, the manner in which macrophages handle iron remains poorly understood. Mammalian cells utilize transferrin-dependent mechanisms to acquire iron via transferrin receptors 1 and 2 (TfR1 and TfR2) by receptor-mediated endocytosis. Here, we show for the first time that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is localized on human and murine macrophage cell surface. The expression of this surface GAPDH is regulated by the availability of iron in the medium. We further demonstrate that this GAPDH interacts with transferrin and the GAPDH-transferrin complex is subsequently internalized into the early endosomes. Our work sheds new light on the mechanisms involved in regulation of iron, vital for controlling numerous diseases and maintaining normal immune function. Thus, we propose an entirely new avenue for investigation with respect to transferrin uptake and regulation mechanisms in macrophages.  相似文献   

7.
Molecular and cellular characterization of transferrin receptor 2   总被引:1,自引:0,他引:1  
Iron is an essential component of many biological processes. However, an excess of iron in the body is also toxic; thus, the levels of this element are tightly regulated. Our knowledge of the mechanism by which iron levels are maintained has been bolstered by the dramatic increase in the discovery of novel molecules implicated in iron homeostasis. The transferrin receptor-transferrin pathway is the main mechanism by which cells take up iron. The recently identified homolog of transferrin receptor, its characterization and its role in iron metabolism is the subject of this review.  相似文献   

8.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   

9.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

10.
Fundamental cellular operations, including DNA synthesis and the generation of ATP, require iron. Viruses hijack cells in order to replicate, and efficient replication needs an iron-replete host. Some viruses selectively infect iron-acquiring cells by binding to transferrin receptor 1 during cell entry. Other viruses alter the expression of proteins involved in iron homeostasis, such as HFE and hepcidin. In HIV-1 and hepatitis C virus infections, iron overload is associated with poor prognosis and could be partly caused by the viruses themselves. Understanding how iron metabolism and viral infection interact might suggest new methods to control disease.  相似文献   

11.
12.
13.
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.  相似文献   

14.
The release of iron and transferrin from the human melanoma cell   总被引:3,自引:0,他引:3  
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The release of iron and transferrin were studied after prelabelling cells with human transferrin doubly labelled with iron-59 and iodine-125. Approx. 45% of internalised iron was in ferritin with little redistribution during reincubation. Iron release was linear with time, while transferrin release was biphasic, suggesting that iron was leaving the cell independently of transferrin. Unlabelled diferric transferrin increased transferrin release, implying a degree of coupling between cell surface binding, internalisation and release of transferrin. Increasing the preincubation time increased the amount of transferrin which remained internalised within the cell. A membrane-bound, iron-binding component with properties consistent with melanotransferrin was observed. Desferrioxamine or pyridoxal isonicotinoyl hydrazone could not remove iron from this compartment, suggesting a high affinity for iron. The number of membrane iron-binding molecules per cell was estimated to be 387,000 +/- 7000 . The non-transferrin-bound membrane Fe did not decrease during reincubation periods up to 5 h, suggesting that the cell was not utilising it. Hence, melanotransferrin may not have a role in internalising iron in melanoma cells.  相似文献   

15.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

16.
Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD) pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer’s and Parkinson’s diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2–3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL) cells were obtained from non-smokers, healthy smokers, and GOLD 1–3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor), storage (ferritin) and export (ferroportin) genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1) and the ratio between FEV1 and forced vital capacity (FEV1/FVC)). The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Futhermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively). In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative stress.  相似文献   

17.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

18.
Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI). NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.  相似文献   

19.
To secure iron from transferrin, hepatocytes use two pathways, one dependent on transferrin receptor (TfR 1) and the other, of greater capacity but lower affinity, independent of TfR 1. To clarify further similarities and differences of the two pathways, we have suppressed TfR 1 by 75-80% in human hepatoma-derived HuH-7 cells co-transfected with vectors bearing full-length TfR 1 cDNA or its first 100 bases in antisense orientation. Suppression of TfR 1 does not lead to down regulation of TfR 2, a recently described second transferrin receptor of as yet uncertain function. Both pathways depend on acidification of the compartments in which iron release from transferrin takes place. Recycling of transferrin is a feature of both pathways, but is substantially more efficient in the receptor-dependent route. Degradation of transferrin occurs only in the receptor-independent route, in the first example of a specific catabolic pathway of transferrin. Linkage of cellular iron uptake to release of the synergistic anion (without which iron is not bound by transferrin) is particularly evident in the receptor-independent pathway. Although the relative importance of the two pathways in normal and deranged hepatic iron metabolism remains to be determined, the receptor-independent route is a substantial accessory for iron uptake to the better-known receptor-dependent track.  相似文献   

20.

Background

The long held view is that mammalian cells obtain transferrin (Tf) bound iron utilizing specialized membrane anchored receptors. Here we report that, during increased iron demand, cells secrete the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which enhances cellular uptake of Tf and iron.

Methods

These observations could be mimicked by utilizing purified GAPDH injected into mice as well as when supplemented in culture medium of model cell lines and primary cell types that play a key role in iron metabolism. Transferrin and iron delivery was evaluated by biochemical, biophysical and imaging based assays.

Results

This mode of iron uptake is a saturable, energy dependent pathway, utilizing raft as well as non-raft domains of the cell membrane and also involves the membrane protein CD87 (uPAR). Tf internalized by this mode is also catabolized.

Conclusions

Our research demonstrates that, even in cell types that express the known surface receptor based mechanism for transferrin uptake, more transferrin is delivered by this route which represents a hidden dimension of iron homeostasis.

General significance

Iron is an essential trace metal for practically all living organisms however its acquisition presents major challenges. The current paradigm is that living organisms have developed well orchestrated and evolved mechanisms involving iron carrier molecules and their specific receptors to regulate its absorption, transport, storage and mobilization. Our research uncovers a hidden and primitive pathway of bulk iron trafficking involving a secreted receptor that is a multifunctional glycolytic enzyme that has implications in pathological conditions such as infectious diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号