首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

2.
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.  相似文献   

3.
The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.  相似文献   

4.
Thirty-six mesocosms, each containing a two-species community of Trifolium repens (C3 legume) and Stenotaphrum secundatum (C4 grass), were grown in sand with three nutrient regimes, zero N low P, zero N high P and supplied N high P, under ambient (aCO2) and twice ambient CO2 (eCO2) for 15 months in two greenhouses. Aboveground annual production in the P limited mesocosms did not respond to eCO2 and was reduced by 50% relative to mesocosms with an adequate P supply, where dry-matter production was increased by 12–24% under eCO2. The stimulation of production by eCO2 occurred throughout the year despite a clear seasonality in growth. There was no effect of eCO2 on leaf area index (LAI), which was larger under high P than low P. Live root mass at the end of the experiment was higher under eCO2 in all nutrient treatments, but the response of total belowground C (root+soil) to eCO2 depended on P treatment. Under limiting P, belowground C was not significantly changed by eCO2 (2–2.3 t belowground C ha−1). Under high P supply, both root and soil C pools increased under eCO2. Under aCO2, low P supply increased belowground C by 0.7–1 t C ha−1 above that added by the high P treatment. P is commonly limiting in Australian ecosystems and the majority of ecosystem N input is provided by biological N fixation. Consequently, the response of legumes to eCO2 is of particular importance. These results demonstrate that at low P availability, there is likely to be only a limited response of biomass production by T. repens to eCO2, which in turn may constrain any ecosystem response.  相似文献   

5.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

6.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

7.
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO2), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root‐feeding insects to eCO2 are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO2 conditions are largely unexplored for root herbivore interactions. This study investigated how eCO2 (700 μmol mol?1) affected a root‐feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root‐feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO2. Root biomass decreased by 16% in eCO2, which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO2 on root C and N concentrations. Weevils caused a sink in plants, resulting in 8–12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO2 and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO2, suggestive of defensive response, but caused a decrease under eCO2. Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root‐growth underpinned the negative effects of eCO2 on vine weevils and speculate that the plant's failure to mount a defensive response at eCO2 may have intensified these negative effects.  相似文献   

8.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   

9.
The objective of this investigation was to quantify the differences in soil carbon stores after exposure of birch seedlings (Betula pendula Roth.) over one growing season to ambient and elevated carbon dioxide concentrations. One-year-old seedling of birch were transplanted to pots containing C4 soil derived from beneath a maize crop, and placed in ambient (350 L L–1) and elevated (600 L L–1) plots in a free-air carbon dioxide enrichment (FACE) experiment. After 186 days the plants and soils were destructively sampled, and analysed for differences in root and stem biomass, total plant tissue and soil C contents and 13C values. The trees showed a significant increase (+50%) in root biomass, but stem and leaf biomasses were not significantly affected by treatment. C isotope analyses of leaves and fine roots showed that the isotopic signal from the ambient and elevated CO2 supply was sufficiently distinct from that of the C4 soil to enable quantification of net root C input to the soil under both ambient and elevated CO2. After 186 days, the pots under ambient conditions contained 3.5 g of C as intact root material, and had gained an additional 0.6 g C added to the soil through root exudation/turnover; comparable figures for the pots under elevated CO2 were 5.9 g C and 1.5 g C, respectively. These data confirm the importance of soils as an enhanced sink for C under elevated atmospheric CO2 concentrations. We propose the use of C4 soils in elevated CO2 experiments as an important technique for the quantification of root net C inputs under both ambient and elevated CO2 treatments.  相似文献   

10.
Microbial necromass is an important source and component of soil organic matter (SOM), especially within the most stable pools. Global change factors such as anthropogenic nitrogen (N), phosphorus (P), and potassium (K) inputs, climate warming, elevated atmospheric carbon dioxide (eCO2), and periodic precipitation reduction (drought) strongly affect soil microorganisms and consequently, influence microbial necromass formation. The impacts of these global change factors on microbial necromass are poorly understood despite their critical role in the cycling and sequestration of soil carbon (C) and nutrients. Here, we conducted a meta-analysis to reveal general patterns of the effects of nutrient addition, warming, eCO2, and drought on amino sugars (biomarkers of microbial necromass) in soils under croplands, forests, and grasslands. Nitrogen addition combined with P and K increased the content of fungal (+21%), bacterial (+22%), and total amino sugars (+9%), consequently leading to increased SOM formation. Nitrogen addition alone increased solely bacterial necromass (+10%) because the decrease of N limitation stimulated bacterial more than fungal growth. Warming increased bacterial necromass, because bacteria have competitive advantages at high temperatures compared to fungi. Other global change factors (P and NP addition, eCO2, and drought) had minor effects on microbial necromass because of: (i) compensation of the impacts by opposite processes, and (ii) the short duration of experiments compared to the slow microbial necromass turnover. Future studies should focus on: (i) the stronger response of bacterial necromass to N addition and warming compared to that of fungi, and (ii) the increased microbial necromass contribution to SOM accumulation and stability under NPK fertilization, and thereby for negative feedback to climate warming.  相似文献   

11.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   

12.
We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose. Received: 18 March 1997 / Accepted: 5 August 1997  相似文献   

13.
Future increase in atmospheric CO2 concentrations will potentially enhance grassland biomass production and shift the functional group composition with consequences for ecosystem functioning. In the “GiFACE” experiment (Giessen Free Air Carbon dioxide Enrichment), fertilized grassland plots were fumigated with elevated CO2 (eCO2) year‐round during daylight hours since 1998, at a level of +20% relative to ambient concentrations (in 1998, aCO2 was 364 ppm and eCO2 399 ppm; in 2014, aCO2 was 397 ppm and eCO2 518 ppm). Harvests were conducted twice annually through 23 years including 17 years with eCO2 (1998 to 2014). Biomass consisted of C3 grasses and forbs, with a small proportion of legumes. The total aboveground biomass (TAB) was significantly increased under eCO2 (p = .045 and .025, at first and second harvest). The dominant plant functional group grasses responded positively at the start, but for forbs, the effect of eCO2 started out as a negative response. The increase in TAB in response to eCO2 was approximately 15% during the period from 2006 to 2014, suggesting that there was no attenuation of eCO2 effects over time, tentatively a consequence of the fertilization management. Biomass and soil moisture responses were closely linked. The soil moisture surplus (c. 3%) in eCO2 manifested in the latter years was associated with a positive biomass response of both functional groups. The direction of the biomass response of the functional group forbs changed over the experimental duration, intensified by extreme weather conditions, pointing to the need of long‐term field studies for obtaining reliable responses of perennial ecosystems to eCO2 and as a basis for model development.  相似文献   

14.

Background & aims

Understanding the mechanism of how phosphorus (P) regulates the response of legumes to elevated CO2 (eCO2) is important for developing P management strategies to cope with increasing atmospheric CO2 concentration. This study aimed to explore this mechanism by investigating interactive effects of CO2 and P supply on root morphology, nodulation and soil P fractions in the rhizosphere.

Methods

A column experiment was conducted under ambient (350?ppm) (aCO2) and eCO2 (550?ppm) in a free air CO2 enrichment (FACE) system. Chickpea and field pea were grown in a P-deficient Vertisol with P addition of 0–16?mg?P?kg?1.

Results

Increasing P supply increased plant growth and total P uptake with the increase being greater under eCO2 than under aCO2. Elevated CO2 increased root biomass and length, on average, by 16?% and 14?%, respectively. Nodule biomass increased by 46?% in response to eCO2 at 16?mg P kg?1, but was not affected by eCO2 at no P supply. Total P uptake was correlated with root length while N uptake correlated with nodule number and biomass regardless of CO2 level. Elevated CO2 increased the NaOH-extractable organic P by 92?% when 16?mg P kg?1 was applied.

Conclusion

The increase in P and N uptake and nodule number under eCO2 resulted from the increased biomass production, rather than from changes in specific root-absorbing capability or specific nodule function. Elevated CO2 appears to enhance P immobilization in the rhizosphere.  相似文献   

15.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

16.
Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size‐symmetric nature of belowground competition, we reasoned that differential growth responses to CO2 and O3 should shift as juvenile individuals mature, thereby altering competitive hierarchies and forest composition. In a 12‐year‐long forest FACE experiment, we used tracer 15N and whole‐plant N content to assess belowground competitive interactions among five Populus tremuloides genotypes, between a single P. tremuloides genotype and Betula papryrifera, as well as between the same single P. tremuloides genotype and Acer saccharum. Under elevated CO2, the amount of soil N and 15N obtained by the P. tremuloides genotype common to each community was contingent on the nature of belowground competition. When this genotype competed with its congeners, it obtained equivalent amounts of soil N and tracer 15N under ambient and elevated CO2; however, its acquisition of soil N under elevated CO2 increased by a significant margin when grown in competition with B. papyrifera (+30%) and A. saccharum (+60%). In contrast, elevated O3 had no effect on soil N and 15N acquisition by the P. tremuloides genotype common in each community, regardless of competitive interactions. Under elevated CO2, the rank order of N acquisition among P. tremuloides genotypes shifted over time, indicating that growth responses to CO2 change during ontogeny; this was not the case under elevated O3. In the aspen‐birch community, the competitive advantage elevated CO2 initially conveyed on birch diminished over time, whereas maple was a poor competitor for soil N in all regards. The extent to which elevated CO2 and O3 will shape the genetic structure and composition of future forests is, in part, contingent on the time‐dependent effects of belowground competition on plant growth response.  相似文献   

17.
Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate–carbon feedbacks. However, detecting microbial feedbacks to elevated CO2 (eCO2) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed back to climate change is still unknown. We overcame this problem by collecting microbial inocula at subfreezing conditions under eCO2 and warming treatments in a semi‐arid grassland field experiment. The inoculant was incubated in a sterilised soil medium at constant conditions for 30 days. Microbes from eCO2 exhibited an increased ability to decompose soil organic matter (SOM) compared with those from ambient CO2 plots, and microbes from warmed plots exhibited increased thermal sensitivity for respiration. Microbes from the combined eCO2 and warming plots had consistently enhanced microbial decomposition activity and thermal sensitivity. These persistent positive feedbacks of soil microbial communities to eCO2 and warming may therefore stimulate soil C loss.  相似文献   

18.

Background &; aims

Elevated atmospheric CO2 (eCO2) can affect soil-plant systems via stimulating plant growth, rhizosphere activity and the decomposition of added (crop residues) or existing (priming) soil organic carbon (C). Increases in C inputs via root exudation, rhizodeposition and root turnover are likely to alter the decomposition of crop residues but will ultimately depend on the N content of the residues and the soil.

Methods

Two soil column experiments were conducted under ambient CO2 (aCO2, 390 ppm) and eCO2 (700 ppm) in a glasshouse using dual-labelled (13C/15N) residues of wheat (Triticum aestivum cv. Yitpi) and field pea (Pisum sativum L. cv. PBA Twilight). The effects of eCO2 and soil N status on wheat rhizosphere activity and residue decomposition and also N recovery from crop residues with different N status (C/N ratio 19.4–115.4) by different plant treatments (wheat, wheat + 25 mg N kg?1 and field pea).

Results

Total belowground CO2 efflux was enhanced under eCO2 despite no increases in root biomass. Plants decreased residue decomposition, indicating a negative rhizosphere effect. For wheat, eCO2 reduced the negative rhizosphere effect, resulting in greater rates of decomposition and recovery of N from field pea residues, but only when N fertiliser was added. For field pea, eCO2 enhanced the negative rhizosphere effect resulting in lower decomposition rates and N recovery from field pea residue.

Conclusions

The effect of eCO2 on N utilisation varied with the type of residue, enhancing N utilisation of wheat but repressing that of field pea residues, which in turn could alter the amount of N supplied to subsequent crops. Furthermore, reduced decomposition of residues under eCO2 may slow the formation of new soil C and have implications for long-term soil fertility.
  相似文献   

19.
White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations ([CO2]) (360 vs 720 μmol mol?1), three soil temperatures (Tsoil) (5, 15, 25°C initially, increased to 7, 17, 27°C, respectively, one month later), and three moisture regimes (low: 30–40%, intermediate: 45–55%, high: 60–70% field water capacity) for four months in environment‐controlled greenhouses. The dry mass of stem, leaves, and roots was measured after 2 and 4 months of treatment. Low Tsoil decreased stem, leaf and total biomass in both measurements, however, the decrease was significantly greater in the elevated than ambient [CO2] after 4 months. Intermediate Tsoil increased root biomass in both measurements. Low moisture reduced stem, leaf, root and total biomass after both 2 and 4 months of treatment. There was a significant Tsoil‐moisture interactive effect on leaf, root, and total biomass after 4 months of treatment, suggesting that the magnitude of biomass enhancement in warmer Tsoil was dependent on the moisture regime. For instance, the increase in total biomass from the low to high Tsoil was 22, 50, and 47% under the low, intermediate and high moisture regimes, respectively. In contrast, the Tsoil×moisture effect on stem biomass was significant after 2 months, but not after 4 months of treatment. High Tsoil increased leaf mass ratio (LMR) after 4 months of treatment, but decreased both root mass ratio (RMR) after both 2 and 4 months, and root:shoot ratio (RSR) after 4 months of treatment. The low moisture regime decreased LMR after 2 and 4 months of treatment, but increased RSR after 4 months of treatment. There were no significant [CO2] effects on biomass allocation or [CO2]×Tsoil×moisture interactions on biomass production/allocation.  相似文献   

20.
Warming and elevated atmospheric CO2 (eCO2) can elicit contrasting responses on different SOM pools, thus to understand the effects of combined factors it is necessary to evaluate individual pools. Over two years, we assessed responses to eCO2 and warming of SOM pools, their susceptibility to decomposition, and whether these responses were mediated by plant inputs in a semi-arid grassland at the PHACE (Prairie Heating and CO2 Enrichment) experiment. We used long-term soil incubations and assessed relationships between plant inputs and the responses of the labile and resistant pools. We found strong and contrasting effects of eCO2 and warming on the labile C pool. In 2008 labile C was increased by eCO2 and was positively related to plant biomass. In contrast, in 2007 eCO2 and warming had interactive effects on the labile C, and the pool size was not related to plant biomass. Effects of warming and eCO2 in this year were consistent withtreatment effects on soil moisture and temperature and their effects on labile C decomposition. The decomposition rate of the resistant C was positively related to indicators of plant C inputs. Our approach demonstrated that SOM pools in this grassland can have early and contrasting responses to climate change factors. The labile C pool in the mixed-grass prairie was highly responsive to eCO2 and warming but the factors behind such responses were highly dynamic across years. Results suggest that in this grassland the resistant C pool could be negatively affected by increases in plant-production driven available soil C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号