首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The genetic diversity of Cryptosporidium spp. in Apodemus spp. (striped field mouse, yellow-necked mouse and wood mouse) from 16 European countries was examined by PCR/sequencing of isolates from 437 animals. Overall, 13.7% (60/437) of animals were positive for Cryptosporidium by PCR. Phylogenetic analysis of small-subunit rRNA, Cryptosporidium oocyst wall protein and actin gene sequences showed the presence of Cryptosporidium ditrichi (22/60), Cryptosporidium apodemi (13/60), Cryptosporidium apodemus genotype I (8/60), Cryptosporidium apodemus genotype II (9/60), Cryptosporidium parvum (2/60), Cryptosporidium microti (2/60), Cryptosporidium muris (2/60) and Cryptosporidium tyzzeri (2/60). At the gp60 locus, novel gp60 families XVIIa and XVIIIa were identified in Cryptosporidium apodemus genotype I and II, respectively, subtype IIaA16G1R1b was identified in C. parvum, and subtypes IXaA8 and IXcA6 in C. tyzzeri. Only animals infected with C. ditrichi, C. apodemi, and Cryptosporidium apodemus genotypes shed oocysts that were detectable by microscopy, with the infection intensity ranging from 2000 to 52,000 oocysts per gram of faeces. None of the faecal samples was diarrheic in the time of the sampling.  相似文献   

2.
This study assessed the prevalence, species and subtypes of Cryptosporidium in goats from Guangdong Province, Hubei Province, Shandong Province, and Shanghai City of China. Six hundred and four fecal samples were collected from twelve goat farms, and the overall infection rate was 11.4% (69/604). Goats infected with Cryptosporidium were found in eleven farms across four provincial areas, and the infection rate ranged from 2.9% (1/35) to 25.0% (9/36). Three Cryptosporidium species were identified. Cryptosporidium xiaoi (45/69, 65.2%) was the dominant species, followed by C. parvum (14/69, 20.3%) and C. ubiquitum (10/69, 14.5%). The infection rate of Cryptosporidium spp. was varied with host age and goat kids were more susceptible to be infected than adult goats. Subtyping C. parvum and C. ubiquitum positive samples revealed C. parvum subtype IIdA19G1 and C. ubiquitum subtype XIIa were the most common subtypes. Other C. parvum subtypes were detected as well, such as IIaA14G2R1, IIaA15G1R1, IIaA15G2R1 and IIaA17G2R1. All of these subtypes have also been detected in humans, suggesting goats may be a potential source of zoonotic cryptosporidiosis. This was the first report of C. parvum subtypes IIaA14G2R1, IIaA15G1R1 and IIaA17G2R1 infecting in goats and the first molecular identification of C. parvum and its subtypes in Chinese goats.  相似文献   

3.
Cryptosporidium spp. are enteric protozoan parasites that infect a wide range of hosts including humans, and domestic and wild animals. The aim of this study was to molecularly characterize the Cryptosporidium spp. found in calf faeces in Japan. A total of 80 pre-weaned beef and dairy calves' diarrhoeic faecal specimens were collected from nine different prefectures in Japan. A nested polymerase chain reaction targeting the small subunit 18S rRNA and GP60 genes were used to detect the Cryptosporidium genotypes and subtypes. 83.8% (67 out of 80) of the specimens were positive for Cryptosporidium spp.; Cryptosporidium was found in both beef and dairy calves. Cryptosporidium parvum was the predominant species, detected in 77.5% (31/40) of beef calves and 80% (32/40) of dairy calves. Cryptosporidium bovis was also detected, 5.0% (2/40) of dairy calves, and C. ryanae was also found 2.5% (1/40) of dairy calves. One mixed-species infection, 2.5% (1/40) was detected in a beef calf having C. parvum, and C. ryanae. We detected the most common subtype of C. parvum (i.e., IIaA15G2R1), as well as other subtypes (i.e., IIaA14G3R1, IIaA14G2R1, and IIaA13G1R1) that have not previously been detected in calves in Japan. Our results demonstrate the widespread diversity of Cryptosporidium infection in calves in Japan.  相似文献   

4.
Iqbal A  Lim YA  Surin J  Sim BL 《PloS one》2012,7(2):e31139

Background

Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.

Methodology/Principal Findings

In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates).

Conclusions/Significance

These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals.  相似文献   

5.
The studies on Cryptosporidium infections of animals in Turkey mostly rely on microscopic observation. Few data are available regarding the prevalence of Cryptosporidium genotypes and subtypes infection. The aim of this study is to analyse the detection of Cryptosporidium genotypes and subtypes from young ruminants. A total of 415 diarrheic fecal specimens from young ruminants were examined for the Cryptosporidium detection by use of nested PCR of the small subunit ribosomal RNA (SSU rRNA) gene and the highly polymorphic 60 kDa glycoprotein (gp60) gene followed by sequence analyses. The results of this study revealed that 25.6% (106 of 415) of the specimens were positive for Cryptosporidium spp. infection. We identified 27.4% (91/333), 19.4% (13/67), and 13.4% (2/15) of positivity in calves, lambs and goat kids, respectively. Genotyping of the SSU rRNA indicated that almost all positive specimens were of C. parvum, except for one calf which was of C. bovis. Sequence analysis of the gp60 gene revealed the most common zoonotic subtypes (IIa and IId) of C. parvum. We detected 11 subtypes (IIaA11G2R1, IIaA11G3R1, IIaA12G3R1, IIaA13G2R1, IIaA13G4R1, IIaA14G1R1, IIaA14G3R1, IIaA15G2R1, IIdA16G1, IIdA18G1, IIdA22G1); three of them (IIaA12G3R1, IIaA11G3R1 and IIaA13G4R1) was novel subtypes found in calves and lambs. Additionally, three subtypes (IIaA11G2R1, IIaA14G3R1, and IIdA16G1) were detected in young ruminants for the first time in Turkey. These results indicate the high infection of Cryptosporidium in Turkey and propose that young ruminants are likely a major reservoir of C. parvum and a potential source of zoonotic transmission.  相似文献   

6.
Inconsistent data exist on the distribution of zoonotic Cryptosporidium species and subtypes in sheep and goats in European countries, and few such data are available from Greece. In this study, 280 fecal specimens were collected from 132 diarrheic lambs and 148 diarrheic goat kids aged 4 to 15?days on 15 farms in northern Greece, and examined for Cryptosporidium spp. using microscopy of Ziehl-Neelsen-stained fecal smears. Cryptosporidium spp. in 80 microscopy-positive fecal specimens (39 from lambs and 41 from goat kids) were genotyped by PCR-RFLP analysis of the small subunit rRNA gene and subtyped by sequence analysis the 60?kDa glycoprotein gene. Among the 33 specimens successfully genotyped, C. parvum was found in 32 and C. xiaoi in one. Seven subtypes belonging to two subtype families (IIa and IId) were identified among the 29 C. parvum specimens successfully subtyped, including IIaA14G2R1 (1/29), IIaA15G2R1 (6/29), IIaA20G1R1 (7/29), IIdA14G2 (1/29), IIdA15G1 (9/29), IIdA16G1 (3/29), and IIdA23G1 (2/29). Lambs were more commonly infected with C. parvum IIa subtypes, whereas goat kids were more with IId subtypes. The results illustrate that C. parvum is prevalent in diarrheic lambs and goat kids in northern Greece and these animals could potentially play a role in epidemiology of human cryptosporidiosis.  相似文献   

7.
Cryptosporidiosis is a parasitic disease caused by Cryptosporidium spp. In immunocompetent individuals, it usually causes an acute and self-limited diarrhea; in infants, infection with Cryptosporidium spp. can cause malnutrition and growth retardation, and declined cognitive ability. In this study, we described for the first time the distribution of C. parvum and C. hominis subtypes in 12 children in Mexico by sequence characterization of the 60-kDa glycoprotein (GP60) gene of Cryptosporidium. Altogether, 7 subtypes belonging to 4 subtype families of C. hominis (Ia, Ib, Id and Ie) and 1 subtype family of C. parvum (IIa) were detected, including IaA14R3, IaA15R3, IbA10G2, IdA17, IeA11G3T3, IIaA15G2R1 and IIaA16G1R1. The frequency of the subtype families and subtypes in the samples analyzed in this study differed from what was observed in other countries.  相似文献   

8.

Background

Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA.

Results

The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585).The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing.

Conclusion

This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.  相似文献   

9.
Genetic Diversity of Cryptosporidium spp. in Captive Reptiles   总被引:3,自引:0,他引:3       下载免费PDF全文
The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards.  相似文献   

10.
Effective management of human cryptosporidiosis requires efficient methods for detection and identification of the species of Cryptosporidium isolates. Identification of isolates to the species level is not routine for diagnostic assessment of cryptosporidiosis, which leads to uncertainty about the epidemiology of the Cryptosporidium species that cause human disease. We developed a rapid and reliable method for species identification of Cryptosporidium oocysts from human fecal samples using terminal restriction fragment polymorphism (T-RFLP) analysis of the 18S rRNA gene. This method generated diagnostic fragments unique to the species of interest. A panel of previously identified isolates of species was blind tested to validate the method, which determined the correct species identity in every case. The T-RFLP profiles obtained for samples spiked with known amounts of Cryptosporidium hominis and Cryptosporidium parvum oocysts generated the two expected diagnostic peaks. The detection limit for an individual species was 1% of the total DNA. This is the first application of T-RFLP to protozoa, and the method which we developed is a rapid, repeatable, and cost-effective method for species identification.  相似文献   

11.
Cryptosporidium, an enteric parasite of humans and a wide range of other mammals, presents numerous challenges to the supply of safe drinking water. We performed a wildlife survey, focusing on white-tailed deer and small mammals, to assess whether they may serve as environmental sources of Cryptosporidium. A PCR-based approach that permitted genetic characterization via sequence analysis was applied to wildlife fecal samples (n = 111) collected from September 1996 to July 1998 from three areas in lower New York State. Southern analysis revealed 22 fecal samples containing Cryptosporidium small-subunit (SSU) ribosomal DNA; these included 10 of 91 white-tailed deer (Odocoileus virginianus) samples, 3 of 5 chipmunk (Tamias striatus) samples, 1 of 2 white-footed mouse (Peromyscus leucopus) samples, 1 of 2 striped skunk (Mephitis mephitis) samples, 1 of 5 racoon (Procyon lotor) samples, and 6 of 6 muskrat (Ondatra zibethicus) samples. All of the 15 SSU PCR products sequenced were characterized as Cryptosporidium parvum; two were identical to genotype 2 (bovine), whereas the remainder belonged to two novel SSU sequence groups, designated genotypes 3 and 4. Genotype 3 comprised four deer-derived sequences, whereas genotype 4 included nine sequences from deer, mouse, chipmunk, and muskrat samples. PCR analysis was performed on the SSU-positive fecal samples for three other Cryptosporidium loci (dihydrofolate reductase, polythreonine-rich protein, and beta-tubulin), and 8 of 10 cloned PCR products were consistent with C. parvum genotype 2. These data provide evidence that there is sylvatic transmission of C. parvum involving deer and other small mammals. This study affirmed the importance of wildlife as potential sources of Cryptosporidium in the catchments of public water supplies.  相似文献   

12.
Fifty-seven fecal samples were collected from giant pandas (Ailuropoda melanoleuca) in the China Conservation and Research Centre for the Giant Panda (CCRCGP) in Sichuan and examined for Cryptosporidium oocysts by Sheather's sugar flotation technique. An 18-year-old male giant panda was Cryptosporidium positive, with oocysts of an average size of 4.60 × 3.99 μm (n = 50). The isolate was genetically analyzed using the partial 18S rRNA, 70 kDa heat shock protein (HSP70), Cryptosporidium oocyst wall protein (COWP) and actin genes. Multi-locus genetic characterization indicated that the present isolate was different from known Cryptosporidium species and genotypes. The closest relative was the Cryptosporidium bear genotype, with 11, 10, and 6 nucleotide differences in the 18S rRNA, HSP70, and actin genes, respectively. Significant differences were also observed in the COWP gene compared to Cryptosporidium mongoose genotype. The homology to the bear genotype at the 18S rRNA locus was 98.6%, which is comparable to that between Cryptosporidium parvum and Cryptosporidium hominis (99.2%), or between Cryptosporidium muris and Cryptosporidium andersoni (99.4%). Therefore, the Cryptosporidium in giant pandas in this study is considered as a new genotype: the Cryptosporidium giant panda genotype.  相似文献   

13.
With the aim of determining the occurrence of Cryptosporidium spp., 222 fecal samples were collected from Murrah buffalo calves aged up to 6 mo. Fecal DNA was genotyped with a nested polymerase chain reaction targeting the 18S rRNA gene and sequencing of the amplified fragment. Nested 18S PCR was positive for 48.2% of the samples. Sequence analysis showed that the most frequent species in these animals was Cryptosporidium ryanae, which was present in buffalo calves as young as 5 d. The zoonotic species Cryptosporidium parvum was detected in one animal. An uncommon Cryptosporidium 18S genotype was found in buffaloes.  相似文献   

14.
The genotyping of numerous isolates of Cryptosporidium parasites has led to the definition of new species and a better understanding of the epidemiology of cryptosporidiosis. A single-locus genotyping method based on the partial sequence of a polymorphic sporozoite surface glycoprotein gene (GP60) has been favored by many for surveying Cryptosporidium parvum and C. hominis populations. Since genetically distinct Cryptosporidium parasites recombine in nature, it is unclear whether single-locus classifications can adequately represent intraspecies diversity. To address this question, we investigated whether multilocus genotypes of C. parvum and C. hominis cluster according to the GP60 genotype. C. hominis multilocus genotypes did not segregate according to this marker, indicating that for this species the GP60 sequence is not a valid surrogate for multilocus typing methods. In contrast, in C. parvum the previously described “anthroponotic” genotype was confirmed as a genetically distinct subspecies cluster characterized by a diagnostic GP60 allele. However, as in C. hominis, several C. parvum GP60 alleles did not correlate with distinct subpopulations. Given the rarity of some C. parvum GP60 alleles in our sample, the existence of additional C. parvum subgroups with unique GP60 alleles cannot be ruled out. We conclude that with the exception of genotypically distinct C. parvum subgroups, multilocus genotyping methods are needed to characterize C. parvum and C. hominis populations. Unless parasite virulence is controlled at the GP60 locus, attempts to find associations within species or subspecies between GP60 and phenotype are unlikely to be successful.The lack of variable morphological traits to identify oocysts from different Cryptosporidium species has driven the development of numerous genotyping methods to survey the diversity in this genus. Genetic markers such as single-nucleotide polymorphisms (24), restriction fragment length polymorphisms (7, 34), random amplification methods (17, 20), conformational polymorphisms (11), simple sequence repeats (3, 10), and DNA sequence polymorphisms (6, 36) have been used to type Cryptosporidium oocysts excreted by humans and animals and oocysts recovered from the environment. This effort has led to a deeper understanding of the taxonomy of the genus Cryptosporidium and the epidemiology of cryptosporidiosis in humans and livestock. As a result of this work, two species responsible for a majority of human infections, Cryptosporidium parvum and C. hominis, were identified (21) and our understanding of the taxonomy of the genus was refined (35).The application of genetic markers to define species, i.e., reproductively isolated populations, is straightforward. At this taxonomic level, all genotypes cosegregate and the choice of marker will have little impact on the outcome, provided that the marker, or combination thereof, is sufficiently polymorphic. The classical example is the variable region of the small-subunit rRNA gene which has been used, as in other taxa, to define many Cryptosporidium species. For studying intraspecies polymorphism, the choice of genotyping methods needs to take into consideration the potential for genetic recombination. This is clearly the case for species such as those belonging to the genus Cryptosporidium, which are known to undergo an obligatory sexual cycle during which genetically dissimilar haplotypes can recombine (28).Among the many markers that have been applied in epidemiological surveys of C. parvum and C. hominis, a variable fragment of the gene encoding a sporozoite surface glycoprotein (8, 26) has been particularly popular. As a result of the widespread adoption of this marker, variously named GP60, cpgp40/15, or gp40, numerous alleles have been identified and deposited in GenBank. The analysis of this continuously growing collection of GP60 sequences has led to the identification of groups of related sequences (18, 27, 32, 33). In an attempt to simplify the comparison of GP60 genotypes among different laboratories, a GP60 nomenclature distinguishing the main groups of alleles has been created (26) and later refined (27).The desire to streamline the genotyping of large numbers of Cryptosporidium isolates collected during surveys has led to the widespread adoption of the GP60 genotype as the only marker for defining intraspecies groups. Since this approach is not compatible with the reassortment of unlinked loci, the classification of isolates on the basis of the GP60 genotype, or any other single marker, needs to be evaluated. Within a recombining population, no single genetic marker can a priori be expected to serve as a surrogate for other loci or multilocus genotypes (MLGs), and any apparent clustering of isolates is dependent on the marker. To investigate the validity of the GP60 genotyping method as commonly applied to the classification of C. parvum and C. hominis isolates, the GP60 genotype was added to a previously described 9-locus genotype (29) and a diversified collection of 10-locus genotypes was examined for intraspecies clusters. We show that, with the exception of some GP60 alleles apparently restricted to human C. parvum, neither C. parvum nor C. hominis GP60 alleles define subspecies genotypes. These results are discussed in the context of ongoing research to better understand the population structure of these parasites and identify genotypes associated with virulence traits.  相似文献   

15.
The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.  相似文献   

16.
A total of 250 mouse fecal specimens collected from crop farms in Queensland, Australia, were screened for the presence of Cryptosporidium spp. using PCR. Of these, 19 positives were detected and characterized at a number of loci, including the 18S rRNA gene, the acetyl coenzyme A gene, and the actin gene. Sequence and phylogenetic analyses identified two genotypes: mouse genotype I and a novel genotype (mouse genotype II), which is likely to be a valid species. Cryptosporidium parvum, which is zoonotic, was not detected. The results of the study indicate that wild Australian mice that are not in close contact with livestock are probably not an important reservoir of Cryptosporidium infection for humans and other animals.  相似文献   

17.
Little is known of the occurrence and age patterns of species/genotypes and subtypes of Cryptosporidium spp. and Giardia duodenalis in calves in Egypt. In this study, 248 fecal specimens were collected from dairy calves aged 1?day to 6?months on eight farms in three provinces during March 2015 to April 2016. Cryptosporidium spp. were detected and genotyped by using PCR-RFLP analysis of the small subunit rRNA (SSU rRNA) gene, while G. duodenalis was detected and genotyped by using PCR and sequence analyses of the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh) and β-giardin (bg) genes. The overall infection rates of Cryptosporidium spp. and G. duodenalis were 9.7 and 13.3%, respectively. The highest Cryptosporidium infection rate (26.7%) was in calves of age?≤?1?month while the highest G. duodenalis infection rate (44.4%) was in calves of 2?months. Three Cryptosporidium spp. were identified, including C. parvum (n?=?16), C. bovis (n?=?5) and C. ryanae (n?=?3), with the former being almost exclusively found in calves of ≤3?months of age and the latter two being only found in calves of over 3?months. Subtyping of C. parvum by PCR-sequence analysis of the 60?kDa glycoprotein gene identified subtypes IIaA15G1R1 (n?=?15) and IIaA15G2R1 (n?=?1). The G. duodenalis identified included both assemblages E (n?=?32) and A (n?=?1), with the latter belonging to the anthroponotic subtype A2. These data provide new insights into the genetic diversity and age patterns of Cryptosporidium spp. and G. duodenalis in calves in Egypt.  相似文献   

18.
Neonatal diarrhea is one of the most important syndromes in dairy cattle. Among enteropathogens, Cryptosporidium spp. are primary causes of diarrhea, but outbreaks due to cryptosporidiosis are rarely reported in cattle. From January to April in 2016, severe diarrhea was observed in over 400 neonatal dairy calves on a large dairy farm in Jiangsu Province of East China. Approximately 360 calves died due to watery diarrhea despite antibiotic therapy. In this study, 18 fecal specimens were collected from seriously ill calves on this farm during the diarrhea outbreak, and analysed for common enteropathogens by enzymatic immunoassay (EIA). In a post-outbreak investigation, 418 and 1372 specimens collected from animals of various age groups were further analysed for rotavirus and Cryptosporidium spp. by EIA and PCR, respectively, to assess their roles in the occurrence of diarrhea on the farm. Cryptosporidium spp. were genotyped using established techniques. Initial EIA tests showed that 15/18 seriously ill calves during the outbreak were positive for Cryptosporidium parvum, while 8/18 were positive for rotavirus. The overall infection rate of Cryptosporidium in pre-weaned calves on the farm was 22.7%, with odds of the Cryptosporidium infection during the outbreak 4.4–23.5 times higher than after the outbreak. Four Cryptosporidium spp. were identified after the outbreak including C. parvum (n = 79), Cryptosporidium ryanae (n = 48), Cryptosporidium bovis (n = 31), and Cryptosporidium andersoni (n = 3), with co-infections of multiple species being detected in 34 animals. Infection with C. parvum (73/79) was found in the majority of calves aged ≤3 weeks, consistent with the age of ill calves during the outbreak. All C. parvum isolates were identified as subtype IIdA19G1. In the post-outbreak investigation, C. parvum infection was associated with the occurrence of watery diarrhea in pre-weaned calves, C. ryanae infection was associated with moderate diarrhea in both pre- and post-weaned calves, while no association was identified between rotavirus infection and the occurrence of diarrhea. Results of logistic regression analysis further suggested that C. bovis infection might also be a risk factor for moderate diarrhea in calves. Thus, we believe this is the first report of a major outbreak of severe diarrhea caused by C. parvum IIdA19G1 in dairy calves. More attention should be directed toward preventing the dissemination of this virulent subtype in China.  相似文献   

19.
The prevalence and distribution of Cryptosporidium spp. in the fecal droppings of the free-living waterfowl Canada geese were examined at 13 sites in Ohio and Illinois. On the basis of the analysis of the small-subunit rRNA gene by PCR, followed by restriction fragment length polymorphism analysis and DNA sequencing, 49 (23.4%) of 209 fecal specimens collected from 10 sites (76.9%) were positive for Cryptosporidium spp. The following five Cryptosporidium species and genotypes were identified: Cryptosporidium goose genotype I (in 36 specimens), Cryptosporidium goose genotype II (in 9 specimens), Cryptosporidium duck genotype (in 1 specimen), Cryptosporidium parvum (in 4 specimens), and C. hominis (in 2 specimens). Cryptosporidium goose genotype I was the most prevalent parasite and was found at all five Cryptosporidium-positive sites in Ohio and at four of five positive sites in Illinois, followed by Cryptosporidium goose genotype II, which was found at two of five positive sites in Ohio and at four of five positive sites in Illinois. Cryptosporidium goose genotype II was detected for the first time, and it is phylogenetically related to goose genotype I and the duck genotype. All three genotypes have not so far been reported in humans, and their pathogenicity in geese has not been determined. Only 10.2% of the Cryptosporidium-positive specimens had C. parvum and C. hominis. The results of this study indicate that Canada geese might only serve as accidental carriers of cryptosporidia infectious to humans and probably play a minor role in the animal-to-human transmission cycle of the pathogen.  相似文献   

20.
Aims: Investigating the distribution and origin of Cryptosporidium species in a water catchment affected by destocking and restocking of livestock as a result of a foot and mouth disease epidemic. Methods and Results: Surface water, livestock and wildlife samples were screened for Cryptosporidium and oocysts characterised by sequencing SSU rRNA and COWP loci, and fragment analysis of ML1, ML2 and GP60 microsatellite loci. Oocyst concentrations in water samples (0–20·29 per 10 l) were related to rainfall events, amount of rainfall and topography. There was no detectable impact from catchment restocking. Cryptosporidium spp. found in water were indicative of livestock (Cryptosporidium andersoni and Cryptosporidium parvum) and wildlife (novel genotypes) sources. However, C. andersoni was not found in any animals sampled. Calf infections were age related; C. parvum was significantly more common in younger animals (<4 weeks old). Older calves shared Cryptosporidium bovis, Cryptosporidium ryanae and C. parvum. Wildlife shed C. parvum, Cryptosporidium ubiquitum, muskrat genotype II and deer genotype. Conclusions: Several factors affect the occurrence of Cryptosporidium within a catchment. In addition to farmed and wild animal hosts, topography and rainfall patterns are particularly important. Significance and Impact of the Study: These factors must be considered when undertaking risk‐based water safety plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号