首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigated climate–growth relationships (in terms of tree-ring width, basal area increment (BAI), and tree-ring δ13C signatures) of Quercus petraea in Central Europe (Luxembourg). Tree responses were assessed for 160 years and compared for sites with contrasting water supply (i.e. Cambisols vs. Regosols with 175 and 42 mm available water capacity, respectively). Oak trees displayed very low climate sensitivity, and climatic variables explained only 24 and 21 % of variance in tree-ring width (TRW) (Cambisol and Regosol sites, respectively). Contrary to our expectations, site-related differences in growth responses (i.e. BAI, δ13C signatures) to climate shifts were not significant. This finding suggests a high plasticity of oak trees in the study area. Despite a distinct growth depression found for all trees in the decade 1988–1997 (attributable to increasing annual mean temperatures by 1.1 °C), oak trees completely recovered in subsequent years. This indicates a high resilience of sessile oak to climate change. Shifts in δ13Ccorr signatures were mainly affected by temperature, and peaks in δ13Ccorr values (corrected for the anthropogenic increase in atmospheric CO2) coincided with decadal maximum temperatures. Correlations between δ13C signatures and TRW (mainly affected by precipitation) were not significant. This finding suggests that wood growth often was disconnected from carbon assimilation (e.g. due to carbon storage in the trunk or allocation to seeds). Since the selection of drought-resistant tree species gains importance within the context of adaptive forest management strategies, Q. petraea proves to be an adaptive tree species in Central Europe’s forests under shifting climatic conditions.  相似文献   

2.
Meristems from 25–90-year-old oak (Quercus robur L. andQ. petraea Matt.) trees and seed embryos were pretreated with polyvinyl pyrrolidone, ascorbic acid, cysteine and citric acid solutions. Tissues were cultured mostly on a WPM medium supplemented with different combinations and concentrations of growth regulators. All the different pretreatments showed a positive effect against the otherwise very rapid and harmful browning of the explants but ascorbic acid (100 mg dm?3) proved to be the most effective. Shooting was induced from seed embryos and meristems originating from adult trees. Rooted plantlets were obtained from explants of seed embryos.  相似文献   

3.
Rapid recycling of triose phosphates in oak stem tissue   总被引:10,自引:3,他引:7  
We report the carbon-13 and oxygen-18 isotope ratios in cellulose from the early and late wood of pedunculate oak (Quercus robur L.). The δ13 C value of the early wood correlates best with that of the late wood of the previous year. The δ18O value of the early wood correlates best with that of the late wood of the same year. We suggest that a biochemical explanation of these data is that there is a rapid cycle between hexose monophosphates and triose phosphates in oak stem tissue during cellulose synthesis. Evidence in support of this explanation is provided by the intramolecular distribution of 14C in labelled fructose extracted from cores of wood that had been supplied with [1?14C]- and [6-14C]glucose.  相似文献   

4.

Background and aim

Significant differences in tree growth were observed in an exotic pine plantation under different harvest residue management regimes at ages 2–10 years. However, the variations in tree growth between residue management treatments could not be explained by soil and foliar nutrient analyses, except by potassium (K) concentration. Therefore, this study determined the carbon isotope composition (δ13C) and oxygen isotope composition (δ18O) of current and archived foliar samples from the exotic pine plantation to establish relationships with foliar K concentration and tree growth indices as a means to determine changes in stomatal conductance (gs) and photosynthetic rate (Amax) or water use efficiency (WUE), and therefore understand the variations in tree growth across treatments.

Methods

The harvest residue treatments were: (1) residue removal, RR0; (2) single level residue retention, RR1; and (3) double level residue retention, RR2. Foliar δ13C and δ18O were determined for samples at ages 2, 4, 6 and 10 years, and the atmospheric 13C discrimination (Δ13C), intercellular CO2 concentration (Ci) and WUE were determined from the δ13C data. Litter needle δ13C and δ18O were also determined over 15 months between ages 9 and 10 years. These parameters or variables where correlated to each other as well as to the periodic mean annual increment of basal area (PAIB) and the periodic mean annual increment of tree diameter at breast height (PAID) across the treatments and over time. Foliar δ13C and δ18O were also related to published data of foliar K concentrations of the same trees.

Results

Significant variations of foliar δ13C, and therefore WUE and Δ13C, across treatments were only observed at ages 4 and 10 years old, and foliar δ18O at age 4 years old only. The results showed increasing foliar δ13C, δ18O and WUE, and decreasing Δ13C and Ci, from RR0 to RR2 treatments. However, while the WUE was positively related to the PAID and PAIB at age 4 years, it was negatively related to PAID and PAIB at age 10 years old. Litter needle δ13C, indicative of WUE, was also negatively related to the PAID at age 10 years old. . At age 4 years, foliar δ13C and δ18O were positively related with a steep slope of 7.70 ‰ across treatments, and that both isotopes were positively related to foliar K concentrations. Similarly, δ18O was negatively related to the Δ13C. No significant relationship can be determined between foliar δ13C, or Δ13C, and δ18O at age 10 years old. In addition, WUE was increasing (p?<?0.001) and Δ13C and Ci decreasing (p?<?0.001) with decreasing PAID over time.

Conclusions

The variations at age 4 years in foliar δ13C or Δ13C and δ18O and increasing WUE with increasing growth rate suggest growth induced water-stress with increasing residue-loading rate as a result of the nutritional effect of the harvest residues on tree growth. At age 10 years, the negative relationships between WUE and PAID indicate nutrient limitation has an over-riding effect on δ13C variations rather than gs. This was due to the lack of a significant relationship between foliar Δ13C and δ18O at this age, as well as over time.  相似文献   

5.
Peripheral populations may be crucial for understanding processes underlying adaptive genetic variation. Their evolution and ecology are driven by various genetic and demographic processes, such as selection, gene flow and bottleneck. Peripheral populations often experience a reduction in density resulting in the Allee effect. The presence of interfertile species increases the opportunity for hybridisation, which allows for a rescue from the Allee effect, but at the risk of genetic extinction through introgression. In this article we investigated a peripheral population of Quercus pubescens, a European tree species. The study population is located in Poland, several hundred kilometres northwards from the main species range. Due to geographic separation, the study population exists under strong pressure of introgression from potentially inter-fertile Q. petraea and Q. robur, which are the only common oaks in Poland. The intermediate morphology between typical Q. pubescens and a common oak species found in the study population supports the introgression hypothesis, which could be in line with the earlier studies of this species complex conducted in the main range of Q. pubescens. Alternatively, the intermediate morphology could reflect the founder effect or selection at an ecological extreme. We attempted to verify these hypotheses using microsatellites and a reference of common oak species. The results showed that the study population is genetically distinct from both Q. petraea and Q. robur. Additionally, the population is characterised by a low effective population size and limited gene dispersal. This suggests that the study population reveals strong reproductive isolation from common species, implying alternative sources of atypical morphology.  相似文献   

6.
Tree populations at the low‐altitudinal or ‐latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree‐ring widths and δ13C and δ18O chronologies to compare the growth rates and long‐term ecophysiological responses to climate in the temperate‐Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO2. Tree‐ring δ18O for both species were mostly correlated with δ18O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree‐ring δ18O but had a positive effect on Q. ilex tree‐ring δ18O. Furthermore, tree‐ring δ18O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO2 fertilization, in contrast to the water‐limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions.  相似文献   

7.
Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (δ13C) and O (δ18O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864–2006. A strong decrease in the isotope ratios of O and C (after atmospheric δ13C corrections) and tree-ring width was observed for the period 1967–2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929–2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO2 is taken into account (by applying a recently developed δ13C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The δ18O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost region.  相似文献   

8.
Tree decline is a global concern and the primary cause is often unknown. Complex interactions between fluctuations in nitrogen (N) and acidifying compounds have been proposed as factors causing nutrient imbalances and decreasing stress tolerance of oak trees. Microorganisms are crucial in regulating soil N available to plants, yet little is known about the relationships between soil N-cycling and tree health. Here, we combined high-throughput sequencing and qPCR analysis of key nitrification and denitrification genes with soil chemical analyses to characterise ammonia-oxidising bacteria (AOB), archaea (AOA) and denitrifying communities in soils associated with symptomatic (declining) and asymptomatic (apparently healthy) oak trees (Quercus robur and Q. petraea) in the United Kingdom. Asymptomatic trees were associated with a higher abundance of AOB that is driven positively by soil pH. No relationship was found between AOA abundance and tree health. However, AOA abundance was driven by lower concentrations of NH4+, further supporting the idea of AOA favouring lower soil NH4+ concentrations. Denitrifier abundance was influenced primarily by soil C:N ratio, and correlations with AOB regardless of tree health. These findings indicate that amelioration of soil acidification by balancing C:N may affect AOB abundance driving N transformations, reducing stress on declining oak trees.Subject terms: Biogeochemistry, Soil microbiology, Microbial ecology  相似文献   

9.
Pedunculate (Quercus robur L.) and sessile (Q. petraea [Matt.] Liebl.) oaks are the most common oak species in Western Europe. They are known to display different ecological requirements, particularly relative to root hypoxia induced by flooding: In a glasshouse study of seedlings, we quantified the effects of flooding on starch mobilization from cotyledons and starch partitioning. Growth and distribution of lateral roots were also measured. The above-ground growth of Q. robur was less affected by flooding than that of Q. petraea which failed to develop a second flush. Root growth was also severely inhibited, particularly in Q. petraea. In Q. robur, lateral root initiation as well as elongation was restricted to the soil surface layer. Flooding markedly reduced total growth and concentrations of in all components except stems. Starch mobilization from cotyledons was delayed by flooding, especially in Q. robur seedlings. Under flooding, the decrease of cotyledons dry mass and starch content in Q. robur was lower than in Q. petraea, whereas Q. robur displayed larger growth than Q. petraea. The features of carbohydrate management may be crucial in the observed differences in flooding tolerance of these species.  相似文献   

10.
One of the longest Southern Hemisphere tree ring chronologies that has potential to provide past climate reconstructions has been produced using New Zealand kauri (Agathis australis). Work to date on kauri has been limited to reconstructions from whole-ring width analysis. In this study, we present the first replicated stable oxygen isotopic composition of early season alpha-cellulose from calendar-dated kauri tree rings within the natural growth range of the species. We also use newly established kauri physiology information about stomatal conductance and a mechanistic model to place initial interpretations on kauri δ18O signatures.Kauri early season δ18O has a range from 26 to 34‰ (V-SMOW) for a site located at Lower Huia Dam in west Auckland, and the mean δ18O chronology from that site is significantly correlated (p < 0.05) to October-December vapor pressure, May-December relative humidity and other associated hydroclimatic variables. The observed statistical relationships are consistent with mechanistic δ18O simulations using the forward model of Barbour et al. (2004) that incorporates a leaf temperature energy balance model to calculate transpiration as forced with local meteorological variables and a range of physiological parameters. The correlation results and mechanistic model simulations suggest kauri δ18O early season wood has the potential to provide new quantitative past climate information for northern New Zealand, and also complement whole ring-width reconstructions of past regional climate variability – a component of which is previously established as sensitive to El Niño-Southern Oscillation activity. Additional work is required to determine whether the observed relationships are consistent across the growth range of kauri and what the optimum sample depth is before long isotope-based palaeoclimate reconstructions from modern and sub-fossil kauri sites are undertaken.  相似文献   

11.
A network of 41 local tree-ring chronologies of oak (Quercus petraea and Quercus robur) in Austria, Hungary, Slovenia, Croatia and Serbia (latitudes 45.00–48.00N, longitudes 13.14–21.63E, altitudes 80–800 m a.s.l.) was constructed and used to establish common climatic signals in oak tree rings in the region. Co-variation of residual chronologies could be resumed in 11 significant principal components (PC), explaining 79 % of common variability. Three of them, PC1, PC2 and PC3, made it possible to identify similarities among the sites. PC1, significantly correlated with all 41 chronologies, indicated a common positive response to precipitation in spring and summer (March and June) and a negative response to temperature in spring and summer (April and June). PC2, significantly correlated with 12 chronologies, indicated a common positive response to precipitation especially in spring (May) and a negative one to high summer temperatures (especially in August) with a pronounced north to south gradient. PC3, significantly correlated with ten chronologies, indicated that a warm previous December and warm current September have a positive effect on tree growth, especially in the south-western part of the study area. The obtained climate–growth relationships will help to understand better the variability of oak growth, to fill palaeoclimatic gaps and to improve dendrochronological research in the region.  相似文献   

12.
Tree-ring width (TRW) chronologies have been widely and long-time used to reconstruct past climate variations in the Andes in South America. The use of tree-ring isotopic chronologies is still not widespread in this region although they have proved to be very efficient climate proxies. Araucaria araucana (Molina) K. Koch is a conifer tree species with some multi-century-old individuals that offers an excellent opportunity to measure stable carbon (δ13C) and oxygen (δ18O) isotopes in cellulose from long tree-ring records. Here, we explore whether current or stored carbohydrates are used for A. araucana radial growth and we assess the potential of a tree-ring isotopic record of to study past climate variability. Eleven A. araucana cores from a dry and high-elevation forest at the northern border of Patagonia, Argentina (38°55’S, 70°44’W) were selected for stable isotopes analyses. The strong correlation between the isotopic composition of the first and second parts of the same ring, but also the strong relationships between δ13C and δ18O records with climate parameters of the current growing season such as temperature, show that tree-rings are built mostly with carbohydrates produced during the current growing season with little or no supply from storage or reserves. This finding leads to reconsidering the interpretation of the legacy effect (i.e. ecological memory effects) based on the previously described strong negative correlation between A. araucana TRW chronologies and previous growing season temperature and suggests a dependence of radial tree growth on the level of development of organs. Regarding climate sensitivity, the A. araucana tree-ring δ13C chronology is strongly related to current summer temperature (r = 0.82, p < 0.001), vapour pressure deficit (VPD; r = 0.79, p < 0.001), precipitation (r = −0.53, p < 0.001) and SPEI2 (r = −0.73, p < 0.001). These strong relationships support the use of δ13C of A. araucana tree-ring cellulose to reconstruct past temperature variations at regional scale in relation with large-atmospheric drivers of climate variability such as the Southern Annular Mode. The A. araucana tree-ring δ18O chronology is also correlated with temperature (r = 0.42, p < 0.01) and VPD (r = 0.45, p < 0.01) of the winter preceding the growing season. This suggests that trees are using water from precipitation infiltrated in the soil during the previous recharge period (autumn-winter). The weak correlations of δ18O with current summer atmospheric conditions and the decoupling between δ18O and δ13C, may be due to a high rate of oxygen exchange between sugars and xylem water (Pex) during cellulose synthesis, which dampens evaporative isotopic fractionation.  相似文献   

13.
Climate reconstructions using stable isotopes (δ18O and δ13C values) in tree rings are based on relationships between present climatic conditions and isotopic series. This widely used approach relies on the assumption that correlations between stable isotopes and climatic conditions are steady over time. In this paper, we evaluate the strength of the correlations between δ18O and δ13C series with several climatic parameters on fourteen black spruce trees coming from three different sites, in northeastern Canada. We applied a 21-year moving window on the r Pearson calculated between stable isotopes and March–May and June–August precipitation, June–August and April–June maximal temperatures. Our results indicate that despite the large distance and differences in stand conditions between the sites, the three sites responded in the same way over time. We show that because the climatic ambiance has changed during the 1980–1990 period due to a positive North Atlantic Oscillation index the δ13C values are not controlled anymore by spring precipitation or summer maximal temperature in the following two decades. As opposed to δ13C series, the relationship between summer maximal temperature and δ18O values was stable over time, and decreased only in the last decade. All these results attest of a “divergence problem” in the last decades which is most pronounced for δ13C series. We conclude that the spruce δ18O series appears to be the most appropriate indicator for reconstructing June–August maximal temperature in the studied area despite the divergence issue, given that the calibration–validation tests and reconstruction can exclude the divergent last decade.  相似文献   

14.
Oaks (Quercus: Fagaceae) are ecological and economic keystones of many forested ecosystems but effective genetic management strategies are hindered by high levels of phenotypic plasticity within species and frequent hybridization among them. These same features, however, make oak communities suited for the study of speciation, hybridization, and genetic adaptation. Efforts to develop new and to adapt existing genomic resources to less-studied members of this genus should not only improve oak conservation and management but also aid the study of fundamental evolutionary processes. Here, we present a suite of 27 highly polymorphic simple sequence repeat (SSR) markers tested in four North American red oak (Quercus section Lobatae) species: Q. rubra, Q. ellipsoidalis, Q. coccinea, and Q. velutina. Five markers are genomic SSRs (gSSRs) — four novel and one previously transferred from Q. petraea — and 22 are gene-based SSRs derived from Q. robur and Q. petraea expressed sequence tags (EST-SSRs). Overall, levels of polymorphism detected with these primer pairs were high, with gene diversity (H e) averaging 0.66 across all loci in natural populations. In addition, we show that EST-SSR markers may have the potential to detect divergent selection at stress-resistance candidate genes among closely related oak species.  相似文献   

15.
Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade‐off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even‐aged stand, trees of the late‐successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early‐successional species (Q. robur). A large‐scale paternity study and a spatially explicit individual‐based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition–colonization trade‐off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics.  相似文献   

16.
The 10-year juvenile records of three hybrid poplar and two aspen cultivars (Populus spp.) from a short rotation coppice (SRC) were assessed by measuring tree-ring width (annual radial increment, ir) and stable isotope ratios of carbon and oxygen (δ13C and δ18O) of α-cellulose. All cultivars showed common ‘juvenile trends’ that were modeled with nonlinear fit (NLF) functions. The ir of all cultivars culminated in the middle of the juvenile phase. Within the first ten years, δ13C showed a gradual decrease of approximately 2.5 ‰ in all cultivars and δ18O showed an asymptotic increase which was variable among the poplar cultivars and which was more pronounced in two hybrid poplars. Potential causes of the juvenile inter-annual variability of δ13C and δ18O were discussed. Likely, the maturation related changes in hydraulic architecture, the canopy closure and the resulting increase of the proportion of shaded crown segments which have lower photosynthetic capacities had an effect on δ13C. An additional effect of changes in N nutrition on δ13C is assumed at the present SRC trial because the NO3 concentration had significantly decreased after ten years. Interpretation of δ18O data remained difficult given the lack of soil water δ18O records.The maturation effect and the respective interaction have resulted in large temporal variability in the present three investigated tree ring traits. However, the impact of two drought vegetation periods (2003 and 2006) was still reflected by the juvenile tree ring records of all traits. Different juvenile trends in the records of the stable isotope ratios δ13C and δ18O, and the trend slopes, which may vary between genetically different cultivars, must be considered in tree ring investigations of SRC poplars.  相似文献   

17.
Compared to the alpine regions of Austria, the eastern part of the country is overall warmer and drier with some tree species growing at the dry limit within their ecological range. This suggests that tree rings may be a valuable proxy for hydroclimatic variability. In this study, we develop ring-width, earlywood-width and latewood-width chronologies obtained from drought sensitive living trees and historical timber from one of the driest and warmest regions of Austria, the Weinviertel. For this, samples of four different tree species − fir (Abies alba Mill.), spruce (Picea abies (L.) Karst.), oak (Quercus petraea Liebl., Q. robur L., Q. cerris L.), and pine (Pinus sylvestris L., P. nigra Arnold) were collected from 88 sites (23 forest stands and 65 historical constructions). 1589 samples (oak: 592 samples, pine: 577, spruce: 212, fir: 208) were dated. Dendro-provenancing was required to ensure that only regional material has entered the chronologies. According to the analyses, historical pine and oak wood were nearly 100% regional, while spruce and fir wood were imported to a great extent with only 44% spruce and 35% fir confirmed to be regional. Because site conditions of historical wood samples are unknown but can have a significant influence on tree growth, changes to site replication over time were important in the assessment of chronology reliability. We also controlled for potential artificial increases in sample depth when more than one construction element is made from a single trunk.We assessed the pine (1584-2011 AD) and oak (1244-2011 AD) chronologies’ potential for reconstructing past hydroclimatic variability by means of response functions in a 17-months window from previous June to current October with climate data from three weather stations (Vienna, Retz, Brno) from 1897 to 2010 AD. The highest seasonal response coefficients are for oak and pine ring width (∼0.43) with respect to aggregated March to July precipitation totals and Thornthwaite climatic water balance. These chronologies reveal a high potential for estimating past changes in regional-scale moisture availability during the earlier growing season.  相似文献   

18.
19.
Reforestation is common to restore degraded ecosystems, but tree‐species choice often neglects ongoing environmental changes. We evaluated the performance of planted seedlings of two oak species at two sites in a Mediterranean mountain (Sierra Nevada, SE Spain): one located within the current altitudinal forest range (1,600–1,760 m), and one above the upper forest limit (1,970–2,120 m). The forest service planted 1,350 seedlings of the deciduous Pyrenean oak and the evergreen Holm oak in a postfire successional shrubland. After 2 years, seedlings were monitored for survival, and a subset of 110 Pyrenean oaks and 185 Holm oaks were harvested for analyses of biomass and foliar nutrient status, δ13C, and δ18O. Both species showed the highest survival and leaf N status above the upper forest limit, and survival increased with altitude within each plot. The deciduous oak benefited most from planting at higher altitude, and it also had greater biomass at the higher site. Correlations between foliar N, δ18O, and δ13C across elevations indicate tighter stomatal control of water loss and greater water‐use efficiency with increasing plant N status at higher altitude, which may represent a so‐far overlooked positive feedback mechanism that could foster uphill range shifts in water‐limited mountain regions. Given ongoing trends and future projections of increasing temperature and aridity throughout the Mediterranean region, tree‐species selection for forest restoration should target forecasted climatic conditions rather than those prevailing in the past. This study highlights that ecosystem restoration provides an opportunity to assist species range shifts under rapidly changing climate.  相似文献   

20.
In this study, we present the detailed molecular investigation of the ectomycorrhizal (ECM) community of Quercus petraea and Quercus robur seedlings grown in bare-root forest nurseries. In all tested oak samples, mycorrhizal colonization was nearly 100%. Morphological observation and molecular investigations (sequencing of fungal ITS rDNA) revealed a total of 23 mycorrhizal taxa. The most frequent and abundant fungal taxa were Hebeloma sacchariolens, Tuber sp., and Peziza sp.; from the detected fungal taxa, 20 were noted for Q. petraea and 23 for Q. robur. Depending on the nursery, the species richness of identified ECM fungal taxa for both oak species ranged from six to 11 taxa. The mean species richness for all nurseries was 5.36 and 5.82 taxa per Q. petraea and Q. robur sample, respectively. According to the analysis of similarity, ECM fungal communities were similar for Q. petraea and Q. robur (R = 0.019; p = 0.151). On the other hand, detected fungal communities were significantly different between nurseries (R = 0.927; p < 0.0001). Using the Spearman rank correlation, it was determined that the ectomycorrhizal diversity (in terms of richness, the Shannon diversity, evenness, and Simpson dominance indices) is significantly related to the soil parameters of each nursery. We conclude that individual nursery may be considered as separate ecological niches that strongly discriminate diversity of ECM fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号