首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

2.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

3.
Spatial and temporal isolation and environmental variability are important factors explaining variation in plant species composition. The effect of fragmentation and disturbance on woody plant species composition was studied using data from 32 remnant church forest patches in northern Ethiopia. The church forests are remnants of dry Afromontane forest, embedded in a matrix of intensively used crop and grazing lands. We used canonical correspondence analysis and partial canonical correspondence analysis to analyze the effects of fragmented and isolated forest-patch identity, environmental and spatial variables on woody plant species composition in different growth stages. The dominance of late successional species was higher at the adult growth stage than seedlings and saplings growth stages. In the adult stages, late successional species like Olea europaea subsp. cuspidate had high frequency of occurrence. Forest patch identity was more important in explaining woody plant assemblages than environmental and spatial variables. For all growth stages combined, environmental variables explained more of the explained total fraction of variation in species composition than spatial variables. Topographic variables best explained variations in species composition for saplings, adults and all growth stages combined, whereas the management regime was most important for seedlings species composition. Our results show that in a matrix of cultivated and grazing land, fragmented and isolated forest patches differ in woody plant species assemblages. Some species are widely distributed and occurred in many patches while other occurred only in one or a few forest patches. Thus, our results indicate that remnant forest patches are important for preserving rare plant species and therefore management practices should focus on minimizing disturbance to the church forests and if possible increase church forest patch size.  相似文献   

4.
The study investigated the effect of forest fires and clearing of fire-destroyed stands on pedoecological conditions of forest regeneration in the Middle Ob pine forests. The study revealed that K content was elevated, pH changed to more neutral, and humus content (detritus) decreased in the upper layer of sod-podzolic soil. After clearing, the temperature of the upper soil layers increased somewhat and that of surface air increased 1.5–2 times. Air temperature was occasionally too high for pine seedlings to survive. The moisture content of the upper soil layer was up to 10% higher than on the control sites. The ecological conditions of the burned sites were generally hospitable for natural forest regeneration.  相似文献   

5.
Width is an essential element of the spatial configuration of riparian forests and may be fundamental in determining their corridor function. In the present study we tested the effect of forest width on floristic structure (tree species composition and diversity) in 15 fragments of riparian forest in an agricultural fragmented landscape of SE Brazil. All these fragments were chosen in a geomorphological homogeneous river reach under similar soil, topographic and human disturbance conditions in order to minimize the influence of these factors. The forest widths considered ranged from 30 to 650 m. The results showed that total species richness and climax species richness were significantly greater when we consider larger fragments, as has been observed in other studies. Nevertheless, species diversity and evenness were not significantly correlated with forest width. The analysis of species composition showed that the narrowest fragments were characterized by species well adapted to temporary flood conditions, while medium and wide fragments showed a composition typical of drier upland areas. Therefore, the effect of forest width on floristic structure appears to be more strongly linked to the effect of river floods in the case of the fragments studied. The existence in riparian corridors of a drier forest, in general richer and more diversified than the annually flooded forest, seems to favor the maintenance of regional species diversity in fragmented landscapes.  相似文献   

6.
Bottomland hardwood forests in the southcentral United States have been cleared extensively for agriculture, and many of the remaining forests are fragmented and degraded. During the last decade, however, approximately 75,000 ha of land—mainly agricultural fields—have been replanted or contracted for replanting, with many more acres likely to be reforested in the near future. The approach used in most reforestation projects to date has been to plant one to three overstory tree species, usually Quercus spp. (oaks), and to rely on natural dispersal for the establishment of other woody species. I critique this practice by two means. First, a brief literature review demonstrates that moderately high woody species diversity occurs in natural bottomland hardwood forests in the region. This review, which relates diversity to site characteristics, serves as a basis for comparison with stands established by means of current reforestation practices. Second, I reevaluate data on the invasion of woody species from an earlier study of 10 reforestation projects in Mississippi, with the goal of assessing the likelihood that stands with high woody species diversity will develop. I show that natural invasion cannot always be counted on to produce a diverse stand, particularly on sites more than about 60 m from an existing forest edge. I then make several recommendations for altering current reforestation practices in order to establish stands with greater woody species diversity, a more natural appearance, and a more positive environmental impact at scales larger than individual sites.  相似文献   

7.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

8.
与物种多样性有关的长白落叶松人工林生物量   总被引:1,自引:0,他引:1  
孙玉军  马炜  刘艳红 《生态学报》2015,35(10):3329-3338
对不同龄组长白落叶松(Larix olgensis)人工林群落的物种多样性和生物量及二者关系研究分析。结果表明:1)随林龄增大,群落物种组成结构和多样性特征发生了很大变化。物种更迭现象明显,春榆等阔叶树重要值上升,长白落叶松优势地位逐渐下降,植被类型向针阔混交林演替。群落Sorensen相似性指数降低,Shannon-Winner多样性指数呈"S"型曲线增长,Pielou均匀度指数呈反"S"型曲线下降,Margalef丰富度指数呈单峰曲线增长趋势;2)随林龄增大,群落生物量"S"型曲线增长趋势明显,分配序列为:乔木层木质物残体层灌木层草本层,占群落生物量比例分别为82.41%、15.10%、1.69%和0.81%。长白落叶松生物量占据主导地位,但所占比例持续下降,属于衰退型种群,而春榆等阔叶树比例上升。林下植被层中,草本的主导地位逐渐丧失,灌木取而代之,生物量所占比例明显升高。地表木质物残体生物量比例缓慢下降;3)群落中物种多样性测度指标与生物量之间单调线性增长的关系明显,Shannon多样性指数较之Pielou均匀度指数更适合作群落生物量度量指标,生物量与Margalef丰富度指数无明显相关性。  相似文献   

9.
人为干扰对风水林群落林下木本植物组成和多样性的影响   总被引:10,自引:0,他引:10  
华南地区的风水林是乡村聚落的一种特色林分, 具有守护村庄的象征意义。在过去的数百年中, 风水林在乡村的社会文化习俗的影响下而受到保护, 对当地的生物多样性保育有着重要作用。为揭示人为干扰对风水林的影响, 我们选择广东省东莞市大岭山镇同一林分起源的3个具有相似地形的风水林, 研究了在不同干扰强度下其林下木本植物种类组成和物种多样性。多响应置换过程(multi-response permutation procedures, MRPP)分析表明, 人为干扰显著改变了风水林林下木本植物组成(P = 0.001, A = 0.3886), 沿着干扰由弱至强的梯度呈现出中生性植物减少、阳生性植物递增的趋势。多样性指数变化趋势为重度干扰>中度干扰>轻度干扰, 但没有表现出统计学意义上的差异(P>0.05)。随着干扰强度的增大, 3个风水林群落相互间的林下物种相似性降低, 物种替代率呈增加趋势。双向聚类分析较好地反映出林下物种因受不同人为干扰强度影响而表现出在空间分布上的差异。指示种分析进一步确定了不同干扰强度下具有显著指示值(IV ≥60)的指示种。综合分析表明, 人为干扰有利于阳性物种在风水林内定居生长, 并明显地改变了林下木本植物组成, 但未能引起物种多样性的显著差异。此外, 找出对人为干扰产生关键生态响应的林下指示种, 对增进风水林的生物多样性保育以及生态系统管理有着重要的理论意义和实践价值。  相似文献   

10.
Aims It is known that taxonomic diversity can be predicted by the spatial configuration of the habitat, in particular by its area and degree of isolation. However, taxonomic diversity is a poor predictor of ecosystem functioning. While functional diversity is strongly linked to the functionality and stability of ecosystems, little is known about how changes in the spatial configuration of the habitat affect functional diversity. In this study, we evaluated whether the spatial configuration of forest patches predicts the functional diversity of plants in a fragmented forest.Methods Five functional leaf traits (leaf dry matter content, leaf punch force, specific leaf area, leaf size and leaf thickness) were measured for 23 dominant plant species in 20 forest patches in a naturally fragmented forest on the Yucatan Peninsula. Abundance-weighted multivariate and individual trait metrics of functional diversity were calculated and correlated with size, degree of isolation and the shape of forest patches.Important findings Patch shape was negatively correlated with multivariate and individual trait (leaf dry matter content and leaf size) metrics of functional diversity. Patch isolation measures were also negatively correlated with individual trait (leaf dry matter content, leaf punch force and leaf size) metrics of functional diversity. In other words, greater patch shape irregularity and isolation degree impoverish plant functional variability. This is the first report of the negative effects of patch shape irregularity and isolation on the functional diversity of plant communities in a forest that has been fragmented for a long time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号