首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
John R. Bowyer  Antony R. Crofts 《BBA》1981,636(2):218-233
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain  相似文献   

2.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of anti-mycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll.2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift.3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reduction 3- to 4-fold under certain if not all conditions.4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase.5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer.6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

3.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t12 3–5 μs). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (1–2 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center.UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of H+II; these may reflect additional sites of action of the inhibitor.  相似文献   

4.
(1) Two populations of reaction centers in the chromatophore membrane can be distinguished under some conditions of initial redox poise (300 mV < Eh < 400 mV): those which transfer a reducing equivalent after the first flash from the secondary quinone (QII) of the reaction center to cytochrome b of the ubiquinone-cytochrome c2 oxidoreductase; and those which retain the reducing equivalent on Q?II until a second flash is given. These two populations do not exchange on a time scale of tens of seconds. (2) At redox potentials higher than 400 mV, Q?II generated after the first flash is no longer able to reduce cytochrome b-560 even in those reaction centers associated with an oxidoreductase. Under these conditions, doubly reduced QII generated by a second flash is required for cytochrome b reduction, so that the QII effectively functions as a two-electron gate into the oxidoreductase at these high potentials. (3) At redox potentials below 300 mV, although the two populations of QII are no longer distinguishable, cytochrome b reduction is still dependent on only part of the reaction center population. (4) Proton binding does not oscillate under any condition tested.  相似文献   

5.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

6.
C.Neil Hunter  Owen T.G. Jones 《BBA》1979,545(2):339-351
Membranes isolated from aerobically grown mutants 01 and PM8bg II-15 of Rhodopseudomonas sphaeroides lack reaction centres. Incorporation of purified reaction centres into these membranes can be achieved by mixing the protein and membranes in 1% sodium cholate with added soybean phospholipid and removing the cholate by dialysis.The kinetics of light-stimulated electron flow in these reconstituted membranes have been examined and compared with those observed in chromatophore membranes isolated from photosynthetically grown R. sphaeroides. Following a single saturating flash, reconstituted reaction centres become photo-oxidised, and about 60% are re-reduced within about 200 ms by cytochrome c2 in the 01 membrane. Cytochrome c2 photo-oxidation is biphasic, the half-time of the first fase being faster than 20 μs. The second phase is variable and can be as slow as 60 ms. A cytochrome b in the membrane becomes photoreduced with a half-time of 27 ms. Electron flow between cytochromes b and c2 is slow and appears only partially sensitive to antimycin A.Using membranes from the reaction centre-less mutant PM8bg II-15 similar reconstitution measurements were performed. The resulting kinetic measurements showed that fast cytochrome b photoreduction and cytochrome c2 photo-oxidation occurred.The absorbance change at 560 minus 570 nm induced by steady-state illumination of 01 membranes reconstituted with reaction centres was measured at a range of ambient potentials; the reaction was abolished at oxidation-reduction potentials below 0 mV. The change was approximately halved at +50 mV, indicating that cytochrome b+50 is the recipient of electrons from the reconstituted reaction centres.  相似文献   

7.
Extinction coefficients for cytochrome b and c1 in the isolated cytochrome bc1 complex from Rhodopseudomonas sphaeroides GA have been determined. They are 25 mM?1.cm?1 at 561 nm for cytochrome b and 17.4 mM?1.cm?1 at 553 nM for cytochrome c1 for the difference between the reduced and the oxidized state. Cytochrome b is present in two forms in the complex. One form has an Em7 of 50 mV, an α-peak of 557 nm at liquid N2 temperature and of 561 nm at RT, which is red-shifted by antimycin A. The other form has an Em7 of ?90 mV, a double α-peak of 555 and 561 nm at liquid N2 temperature corresponding to 559 and 566 nm at RT. The absorption at 566 nm is red-shifted by myxothiazol. The two shifts are independent of each other. Both midpoint potentials of cytochromes b are pH-dependent. The redox center compositions of the cytochrome bc1 complexes from Rhodopseudomonas sphaeroides and from mitochondria are identical.  相似文献   

8.
1. In Rhodopseudomonas sphaeroides the Qx absorption band of the reaction center bacteriochlorophyll dimer which bleaches on photo-oxidation is both blue-shifted and has an increased extinction coefficient on solubilisation of the chromatophore membrane with lauryldimethylamine-N-oxide. These effects may be attributable in part to the particle flattening effect. 2. The difference spectrum of photo-oxidisable c type cytochrome in the chromatophore was found to have a slightly variable peak position in the alpha-band (lambda max at 551--551.25 nm); this position was always red-shifted in comparison to that of isolated cytochrome c2 (lambda max at 549.5 +/- 0.5 nm). The shift in wavelength maximum was not due to association with the reaction center protein. A possible heterogeneity in the c-type cytochromes of chromatophores is discussed. 3. Flash-induced difference spectra attributed to cytochrome b were resolved at several different redox potentials and in the presence and absence of antimycin. Under most conditions, one major component, cytochrome b50 appeared to be involved. However, in some circumstances, reduction of a component with the spectral characteristics of cytochrome b-90 was observed. 4. Difference spectra attributed to (BChl)2, (Formula: see text), c type cytochrome and cytochrome b50 were resolved in the Soret region for Rhodopseudomonas capsulata. 5. A computer-linked kinetic spectrophotometer for obtaining automatically the difference spectra of components functioning in photosynthetic electron transfer chains is described. The system incorporates a novel method for automatically adjusting and holding the photomultiplier supply voltage.  相似文献   

9.
Cytochrome bd is a terminal component of the respiratory chain of Escherichia coli catalyzing reduction of molecular oxygen to water. It contains three hemes, b558, b595, and d. The detailed spectroelectrochemical redox titration and numerical modeling of the data reveal significant redox interaction between the low-spin heme b558 and high-spin heme b595, whereas the interaction between heme d and either hemes b appears to be rather weak. However, the presence of heme d itself decreases much larger interaction between the two hemes b. Fitting the titration data with a model where redox interaction between the hemes is explicitly included makes it possible to extract individual absorption spectra of all hemes. The α- and β-band reduced-minus-oxidized difference spectra agree with the data published earlier ([22] J.G. Koland, M.J. Miller, R.B. Gennis, Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry 23 (1984) 1051-1056., and [23] R.M. Lorence, J.G. Koland, R.B. Gennis, Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry 25 (1986) 2314-2321.). The Soret band spectra show λmax = 429.5 nm, λmin ≈ 413 nm (heme b558), λmax = 439 nm, λmin ≈ 400 ± 1 nm (heme b595), and λmax = 430 nm, λmin = 405 nm (heme d). The spectral contribution of heme d to the complex Soret band is much smaller than those of either hemes b; the Soret/α (ΔA430A629) ratio for heme d is 1.6.  相似文献   

10.
Günter A. Peschek 《BBA》1981,635(3):470-475
The cytochrome content of membrane fragments prepared from the bluegreen alga (cyanobacterium) Anacystis nidulans was examined by difference spectrophotometry. Two b-type cytochromes and a hitherto unknown cytochrome a could be characterized. In the reduced-minus-oxidised difference spectra the a-type cytochrome showed an α-band at 605 nm and a γ-band at 445 nm. These bands shifted to 590 and 430 nm, respectively, in CO difference spectra. NADPH, NADH and ascorbate reduced the cytochrome through added horse heart cytochrome c as electron mediator. In presence of KCN the reduced-minus-oxidised spectrum showed a peak at 600 nm and a trough at 604 nm. Photoaction spectra of O2 uptake and of horse heart cytochrome c oxidation by CO-inhibited membranes showed peaks at 590 and 430 nm. These findings are consistent with cytochrome aa3 being the predominant respiratory cytochrome c oxidase in Anacystis nidulans.  相似文献   

11.
D. Zannoni  B.L. Marrs 《BBA》1981,637(1):96-106
Membranes from cells of Rhodopseudomonas capsulata grown anaerobically in the dark on glucose plus dimethyl sulfoxide differ from those obtained from photoheterotrophically grown cells in several ways: (a) there are qualitative and quantitative variations in the cytochrome composition; (b) electron-transport rates are unusually low in the cytochrome b to cytochrome c region; (c) light-induced ATP synthesis is dependent on the ability of the alternate respiratory pathway to maintain the Q10-cytochrome b complex in a partially oxidized state; (d) a non-energy-conserving NADH-dehydrogenase activity dominates the respiratory activity. In addition, data obtained with both wild-type and mutant cells that contain altered electron-transport systems tend to exclude a role of the redox chain as ATP-producing machinery during anaerobic/dark growth.  相似文献   

12.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

13.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromatophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

14.
Mammalian cytochrome c can effectively replace bacterial cytochrome c2 as the electron donor to the bacterial photosynthetic reaction center in either the natural chromatophore or a reconstituted reaction center/phospholipid membrane. In this paper, the reconstituted membrane was used to describe the nature of cytochrome c binding to the reaction center, the location of bound cytochrome c in the membrane profile and the perturbation of the reaction center and phospholipid profile structures induced by cytochrome c binding. These structural studies utilized the combined techniques of X-ray and neutron diffraction.  相似文献   

15.
In chromatophores from the facultative photosynthetic bacterium, Rhodopseudomonas sphaeroides, Ga, the function of ubiquinone-10 (UQ-10) at two specialized binding sites (QB and QZ) has been determined by kinetic criteria. These were the rate of rereduction of flash-oxidized [BChl]2+ through the back reaction, or the binary pattern of cytochrome b561 (for the Qb site), and the rapid rate of rereduction of flash-oxidized cytochrome c, or the relative amplitude of the antimycin-sensitive Phase III (t12 ~ 1.5 ms) of the carotenoid spectral shift induced by a single turnover flash at Eh ~ 100 mV (for the QZ site). The phenomenon associated with the two binding sites behaved differently on extraction of UQ from lyophilized chromatophores using isooctane. By this selective extraction procedure it has been possible to show that UQ-10 molecules are required at different concentrations in the membrane for specific redox events in secondary electron transfer. The reduction of cytochrome b occurs in particles which no longer show the phenomena associated with QZ, but still possess a large proportion of Qb, while rapid rereduction of flash-oxidized cytochrome c requires an additional complement of UQ-10 (QZ). Extracted particles lacking QZ and a large amount of QB have been reconstituted with different UQ homologs (UQ-1, UQ-3, and UQ-10). Specific redox events have been studied in reconstituted particles. All UQ homologs act as secondary acceptors from the reaction center; UQ-3 and UQ-10, but not UQ-1, are also able to reconstitute the function of QZ as electron donor to cytochrome c. Only UQ-10, however, is able to restore normal rates of the overall cyclic electron transfer induced by a train of flashes, and maximal rates of the light-induced ATP synthesis. The results are interpreted in terms of Q-cycle mechanisms in which quinone and quinol at both the QZ and Qb sites are in rapid equilibrium with the quinone pool.  相似文献   

16.
17.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

18.
In Chromatium chromatophores, the response of part of the carotenoid complement to a light-induced membrane potential is a shift to the blue of its absorption spectrum, as indicated by the characteristics of the light-minus-dark difference spectrum. The spectrum in the dark of the population of carotenoid which responds to a light-induced membrane potential is located at least 1–2 nm to the red in comparison to the total carotenoid absorption. The results indicate that the proposed permanent electric field affecting the responding population has a polarity with respect to the chromatophore membrane opposite to that in Rhodopseudomonas sphaeroides chromatophores. The carotenoid absorption change interferes seriously with measurements of cytochrome c-555 redox changes at its α band.  相似文献   

19.
Chromatophore membranes from Rhodopseudomonas sphaeroides activated by light display a carotenoid band shift (phase III) that occurs in response to the electrogenic event (charge separation) in the ubiquinol-cytochrome c oxidoreductase. The rate of formation of this electrogenic event has previously been shown to be strongly dependent on the initial redox state of a bound ubiquinone species (designated Qz) associated with the oxidoreductase. When Qz is reduced (quinol form; QzH2) the electrogenic event takes place in less than 5 ms. When Qz is oxidized (quinone form; Qz) it is much slower; under these conditions the fact that it occurs has been ignored. In this report, we address this issue and describe events that lead to the generation of carotenoid band shift phase III when the total population of Qz of the chromatophore is oxidized before flash activation. The following characteristics are apparent: (1) When oxidized Qz is present before activation, the half-time of formation of carotenoid band-shift phase III is 10–20-times slower than when QzH2 is present before activation. (2) When oxidized Qz is present, the measured full extent of phase III generated by a single-turnover flash is diminished by about one-half of that observed when QzH2 is present before activation. (3) The rate of formation of the carotenoid band shift phase III when Qz is initially oxidized corresponds closely to the rate of completion of the flash-activated electron-transfer cycle. This can be seen under two different conditions: (a) as the partial reduction of cytochrome c1 + c2 (at redox potentials of 200–300 mV) or (b) as the partial reduction of flash-oxidized bacteriochlorophyll dimer, (BChl)2+ (at redox potentials above 300 mV). (4) At the higher redox potentials (above 300 mV), antimycin-sensitive proton binding shares a common, rate-limiting step with the carotenoid band shift phase III and (BChl)2+ reduction. (5) However, proton binding at redox potentials above 300 mV is not observed at all unless valinomycin (K+) is present. Thus, proton binding occurs only when the carotenoid band shift is collapsed in milliseconds, whereas, conversely, the carotenoid band shift is stably generated when proton binding is not observed. These and other observations are the basis of a reevaluation of our current views on the coupling of electron transfer and proton translocation in photosynthetic bacteria.  相似文献   

20.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号