首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core proteins I (Mr 50 000) and II (Mr 47 000) were isolated from beef heart ubiquinol-cytochrome c reductase, and radioimmunoassays were developed for both. Immunoreplica experiments show that antisera against each protein react with a single peptide in both isolated Complex III and in mitochondria. Thus, core proteins are not aggregated forms of smaller peptides as suggested for the yeast protein (Jeffrey, A., Power, S. and Palmer, G., Biochem. Biophys. Res. Commun. (1979) 86, 271-277). Core proteins were quantitated in Complex III and in mitochondria using radioimmunoassay. Approx. 2 mol core protein II per mol core protein I were found. A molar ratio of 1 : 2 : 2 : 1 is suggested for core protein I : core protein II : cytochrome b : cytochrome c1. Radioimmunoassay shows that the antibodies react as extensively with Complex III-bound core protein as with the isolated core proteins. In spite of this, the antibodies do not inhibit electron transport in submitochondrial particles or isolated Complex III, and they have no oligomycin- or uncoupler-like effects on submitochondrial particles oxidizing NADH. The combined results from radioimmunoassay and immunoreplica experiments strongly suggest, however, that core proteins are specifically associated with Complex III in the mitochondria, implying a specific role there.  相似文献   

2.
Mitochondria (or mitoplasts) and submitochondrial particles from yeast were treated with [125I] diazobenzenesulfonate to label selectively proteins exposed on the outer or inner surface of the inner mitochondrial membrane. Polyacrylamide gel analysis of the immunoprecipitates formed with antibodies against Complex III or cytochromeb revealed that the two core proteins and cytochromeb were labeled in both mitochondria and submitochondrial particles, suggesting that these proteins span the membrane. Cytochromec 1 and the iron sulfur protein were labeled in mitochondria but not in submitochondrial particles, suggesting that these proteins are exposed on the cytosolic side of the inner membrane. The steady-state reduction of cytochromesb andc 1 was determined with succinate and the decyl analogue of coenzyme Q as substrates. Addition of the coenzyme Q analogue to mitochondria caused reduction of 15–30% of the total dithionite-reducibleb and 100% of the cytochromec 1: Addition of the coenzyme Q analogue to submitochondrial particles led to the reduction of 70% of the total dithionite-reducible cytochromeb but insignificant amounts of cytochromec 1. A model to explain the topography of Complex III in the inner membrane is proposed based on these results.Abbreviations used: DABS, diazobenzene sulfonate; DBH2, reduced form of decyl analogue of coenzyme Q (2,3-dimethoxy-5-methyl-6-n-decyl-1,4-benzoquinone); PMSF, phenylmethylsulfonyl fluoride; SDS, sodium dodecyl sulfate.  相似文献   

3.
A kinetic study on ubiquinol-cytochrome f reductase (EC 1.10.2.2) has been undertaken either in situ in KCN-inhibited mitochondria and submitochondrial particles, or in the isolated cytochrome b-c1 complex using ubiquinol-1 and exogenous cytochrome c as substrates. The steady-state two-substrate kinetics of the reductase appears to follow a general sequential mechanism, allowing calculation of a Km for ubiquinol-1 of 13.4 μM in mitochondria and of 24.6 μM in the isolated cytochrome b-c1 complex. At low concentrations of cytochrome c, however, the titrations as a function of quinol concentration appear biphasic both in mitochondria and in submitochondrial particles containing trapped cytochrome c inside the vesicle space, fitting two apparent Km values for ubiquinol-1. Relatively high antimycin-sensitive rates of ubiquinol-1-cytochrome c reductase have been found in submitochondrial particles: both the Vmax and the Km for ubiquinol-1 are, however, affected by the overall orientation of the particle preparation, i.e., by the reactivity of cytochrome c with its proper site. The turnover numbers corrected for particle orientation with respect to cytochrome c interaction are at least 2-fold higher in submitochondrial particles than in mitochondria. This is particularly evident using inside-out particles containing trapped cytochrome c in the vesicle space (and therefore reacting with its physiological site). A diffusion step for the quinol substrate appears to be rate limiting in mitochondria and can be removed by addition of deoxycholate, suggesting that the oxidation site of ubiquinol may be more exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

4.
Complex III isolated from yeast mitochondria catalyzed an antimycin A and Diuron-sensitive coenzyme QH2-cytochrome c reductase activity with a turnover number of 15.7 sec?1 and contained 10 nmoles of cytochrome b and 4.6 nmoles of cytochrome c1 per mg of protein. Electrophoresis in sodium dodecyl sulfate acrylamide gels resolved Complex III into 10 bands with apparent molecular weights of 50,000, 40,000, 30,000, 29,000, 24,000, 17,000, 16,000, 12,000, 8,400, and 5,800. Yeast cells were labeled under nongrowing conditions with (35S)-methionine in the absence or presence of inhibitors of cytoplasmi? or mitochondrial protein synthesis. Labeled Complex III was isolated by immunoprecipitation from detergent-solubilized mitochondria using antiserum raised against the purified complex. Analysis of the immunoprecipitates by polyacrylamide gel electrophoresis revealed that a 30,000-dalton protein, cytochrome b, as well as 16,000-dalton protein were labeled in the presence of cycloheximide, indicating that they are products of mitochondrial protein synthesis. Immunoprecipitates from mitochondria obtained from cells labeled in the presence of chloramphenicol contained a new radioactive peak with a molecular weight of 100,000. In addition, significant decreases in the labeling of the proteins with molecular weights of 50,000, 40,000, 30,000, and 16,000 were observed. When Complex III was isolated by immunoprecipitation from intact spheroplasts after a 5-minute pulse with (35S)-methionine, the 100,000-dalton protein was labeled in the immunoprecipitate whether or not chloramphenicol was present; however, after a 1-hour chase with unlabeled methionine, decreased labeling of the 100,000-dalton protein was observed concomitant with an increased labeling of the 50,000- and 40,000-dalton proteins. These results suggest that a protein with a molecular weight of 100,000 may either be a precursor or a partially assembled form of other proteins of Complex III, most probably the two largest polypeptides.  相似文献   

5.
Attempts to solubilize active ubiquinol: cytochrome c reductase, cytochrome b-c1 complex, from the submitochondrial particles from sweet potato root tissue ended in failure because all detergents tested caused inactivation of this enzyme complex. Consequently, the complex was isolated with the content of cytochrome b as the marker for purification after solubilization with deoxycholate though it was inactive. Deoxycholate had no effect on two ±-bands at 555 and 558 nm but caused a blue shift of an ±-band at 563 nm in the reduced-minus-oxidized difference spectrum of the submitochondrial particles at low temperature. The purified complex exhibited the same difference spectra at low and room temperatures as the submitochondrial particles in the presence of deoxycholate, which suggests that the complex has three (at least two) cytochrome b components with different spectroscopic properties and that the apparent molar ratio of cytochrome b to c1 is 1.5. The purified complex consisted of eight subunits: I, 51 kDa; II, 49kDa; III, 33kDa; IV, 32 kDa; V, 27 kDa; VI, 17 kDa; and VII and VIII, 10 kDa. Subunits III and IV were cytochrome c1 and b, respectively.  相似文献   

6.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

7.
Q.S. Zhu  J.A. Berden  E.C. Slater 《BBA》1983,724(2):184-190
A quinol: ferricytochrome c oxidoreductase has been isolated from chromatophores of Chromatium vinosum by two procedures, involving extraction by bile salts and methanol, respectively. The steady-state kinetics indicate a random mechanism, with a Km for 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol of 1.1 μM and for the acceptor cytochrome c 1.75 μM. The enzyme is inhibited by myxothiazol, competitively with respect to quinol, with a Ki of about 2.3 μM. The protein reacts with ubiquinol produced by the succinate: Q oxidoreductase in submitochondrial particles or isolated succinate: cytochrome c reductase and can partially restore activity to myxothiazol-inhibited, antimycin-sensitive ubiquinol: cytochrome c oxidoreductase. The protein is considered to be analogous to the postulated myxothiazol-sensitive Q-binding protein in ubiquinol: cytochrome c oxidoreductase.  相似文献   

8.
Type I cytochrome c3 is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c3. This work presents the NMR assignment of the haem substituents in type I cytochrome c3 isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c3 belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase.  相似文献   

9.

Background

Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.

Methods

The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.

Results

We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.

Conclusions

Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.

General significance

Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides.  相似文献   

10.
Rat liver mitochondria were incubated in vitro with radioactive leucine, and submitochondrial particles prepared by several methods. Analysis of the labeled mitochondrial membrane fractions by sodium dodecylsulfate gel electrophoresis revealed three labeled bands of molecular weights corresponding to 40,000; 27,000; and 20,000 daltons. Electrophoresis for longer times at higher concentrations of acrylamide revealed eight labeled bands, ranging in molecular weights from 48,000 to 12,000.Mitochondria were incubated for 5 min with [3H]leucine followed by a chase of unlabeled leucine. Gel electrophoresis of the membranes obtained after labeling for 5 min indicated significant synthesis of polypeptides in the 40,000 Mr, range and very little labeling of low molecular-weight polypeptides. After addition of the chase, increased synthesis of the high molecular-weight polypeptides was observed; however, no significant increase or decrease of radioactivity in the bands of low molecular-weight was observed, suggesting that rat liver mitochondria have the ability to synthesize complete proteins in the Mr 27,000–40,000 range.Approximately 16% of the total leucine incorporated into protein by isolated rat liver mitochondria in vitro could be extracted by chloroform: methanol. Gel electrophoresis of the chloroform: methanol extract revealed several bands containing radioactivity with the majority of counts in a band of 40,000 molecular weight. Gel electrophoresis of the chloroform: methanol extract of lyophilized submitochondrial particles indicated label in two broad bands in the low molecular-weight region of 14,000-10,000 with insignificant counts in the higher molecular-weight regions of the gel.Yeast cells were pulse labeled in vivo with [3H]leucine in the presence of cycloheximide and the submitochondrial particles extracted with chloroform:methanol. The extract separated after gel electrophoresis into four labeled bands ranging in molecular weight from 52,000 to 10,000. Preincubation of the yeast cells with chloramphenicol prior to the pulse labeling caused a 6-fold stimulation of labeling into the band of lowest molecular weight of the chloroform: methanol extract. These results suggest that the accumulation of mitochondrial proteins synthesized in the cytoplasm, when chloramphenicol is present in the medium, may stimulate the synthesis of certain specific mitochondrial proteins which are soluble in chloroform: methanol.  相似文献   

11.
The cytochrome b of sonic particles of mitochondria or the isolated segment of the respiratory chain containing cytochromes b and c1 (Complex III) was 80–95% reducible with Q1H2 (ubiquinol-5) in the presence of antimycin plus selected electron acceptors added externally (i.e., oxidants which reacted preferentially with respiratory components on the oxygen side of the point of inhibition by antimycin) such as oxygen or ferricyanide depending on whether sonic particles or isolated Complex III was used. In contrast, less than 40% of the cytochrome b was reduced by Q1H2 in the absence of either antimycin or the external electron acceptor. In the presence of antimycin ascorbate or mercaptoethanol, which behaved as mild reducing agents, completely inhibited the reduction of cytochrome b by Q1H2.  相似文献   

12.
Exposure of antimycin-treated Complex III (ubiquinol-cytochromec reductase) purified from bovine heart mitochondria to [3H]succinic anhydride plus [35S]p-diazobenzenesulfonate (DABS) resulted in somewhat uniform relative labeling of the eight measured subunits of the complex by [3H]succinic anhydride. In contrast, relative labeling by [35S]DABS was similar to [3H]succinic anhydride for the subunits of high molecular mass, i.e., core proteins, cytochromes, and the iron-sulfur protein, but greatly reduced for the polypeptides of molecular mass below 15 kDa. With Complex III depleted in the iron-sulfur protein the relative labeling of core protein I by exposure of the complex to [3H]succinic anhydride was significantly enhanced, whereas labeling of the polypeptides represented by SDS-PAGE bands 7 and 8 was significantly inhibited. Dual labeling of the subunits of Complex III by14C- and3H-labeled succinic anhydride before and after dissociation of the complex by sodium dodecyl sulfate, respectively, was measured with the complex in its oxidized, reduced, and antimycin-inhibited states. Subunits observed to be most accessible or reactive to succinic anhydride were core protein II, the iron-sulfur protein, and polypeptides of SDS-PAGE bands 7, 8, and 9. Two additional polypeptides of molecular masses 23 and 12 kDa, not normally resolved by gel-electrophoresis, were detected. Reduction of the complex resulted in a significant change of14C/3H labeling ratio of core protein only, whereas treatment of the complex with antimycin resulted in decreases in14C/3H labeling ratios of core proteins I and II, cytochromec 1, and a polypeptide of molecular mass 13 kDa identified as an antimycin-binding protein.  相似文献   

13.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,314(2):164-177
CO-difference absorbance spectra of both intact cells and of mitochondrial preparations isolated from Crithidia fasciculata were obtained after anaerobiosis was attained either with substrates or with dithionite. Under both sets of conditions, the CO-difference spectrum of cytochrome a3, with difference absorbance maxima at 430 and 589 nm and minima at 443 and 612 nm, was readily identified in both the intact cells and in the mitochondria. In addition to the difference absorbance bands of cytochrome a3-CO, three difference absorbance maxima at 417, 538 and 570 nm and a minimum at 556 nm were observed. The magnitude of the maximum at 570 nm relative to the maximum of cytochrome a3-CO at 589 nm was less for mitochondria rendered anaerobic with substrate than for mitochondria rendered anaerobic with dithionite. This difference was taken to define operationally two groups of mitochondrial CO-binding pigments: Group I is that group observed on anaerobiosis with substrate: Group II is the additional group observed on anaerobiosis with dithionite. The Group I CO-binding pigments were virtually absent from submitochondrial particles derived by sonication, but the Group II pigments remained.Photochemical action spectra were obtained with isolated mitochondria and intact cells to ascertain if cytochrome o was present. These action spectra, obtained in CO plus O2 atmospheres, had maxima only at 432, 550 and 588 nm, attributable to the photodissociation of cytochrome a3-CO. Even after suppression of cytochrome a3 activity to 10% of the normal value, no contribution of cytochrome o activity to the photochemical action spectrum was observed. Cytochrome a3 is therefore the only functional terminal oxidase present in the mitochondria of Crithidia fasciculata.  相似文献   

14.
Wei-Ping Lu  Don P. Kelly 《BBA》1984,765(2):106-117
Four c-type cytochromes were purified by several procedures including chromatography on DEAE-Sepharose CL-6B, Phenyl-Sepharose CL-4B and Sephadex G-75, G-100 and G-200 and chromatofocusing. Cytochrome c-551 had a pI value of 5.2 and an Mr of 260 000 consisting of six non-covalently bound polypeptides each with an Mr of 43 000, and contained four to five haems. Cytochrome c-552.5 had a pI value of 4.8 and an Mr of 56 000 consisting of two polypeptides with the same Mr 29 000, and contained two haems. Cytochromes c-551 and c-552.5 were reduced by ascorbate to about 70 and 60% of the fully dithionite-reduced values, respectively, and both were essential components in the thiosulphate-oxidizing multi-enzyme system (other components of the system were ‘enzyme A’, ‘enzyme B’ and sulphite: cytochrome c oxidoreductase). These two cytochromes functioned as electron carriers and effectors in the oxidation of thiosulphate. Some evidence suggested that cytochrome c-551 might be a specialized electron transfer component for sulphonate-sulphur oxidation. Both cytochromes could be reduced by thiosulphate in the presence of enzymes A and B. Cytochrome c-550 (basic) and cytochrome c-550 (acidic) were small proteins with Mr 15 000 and 14 000 and pI values of over 8 and 5, respectively. Their physiological role is uncertain.  相似文献   

15.
The core structures of microvilli from absorptive cells of the intestinal epithelium are primarily composed of calmodulin (Mr 16,000), actin (Mr 43,000), villin (Mr 95,000) and a protein of Mr 110,000. We have isolated this protein and raised antibodies against it. The antibodies interact specifically with villin and Mr 110,000 polypeptides present in isolated microvilli or brush borders. However, after absorption on an immobilized villin preparation, these antibodies still immunoprecipitate the Mr 110,000 protein but not villin. Thus, these two proteins appear to share some antigenic determinants but also contain other determinants specific for each protein. Immunolocalization studies have been performed using specific antibodies against the Mr 110,000 protein. Immunofluorescent studies on thin frozen sections of intestinal cells show that this protein is located in the brush border and at the basolateral faces of these polarized cells. Immunoferritin studies on rat brush borders demembranated with the detergent Triton X-100 show the association of the Mr 110,000 protein with core filaments of microvilli, as well as with some filaments localized in the terminal web network.Using sealed, right-side-out vesicles prepared from pig intestinal mucosa in the presence of Ca2+ and Mg2+, a polypeptide of Mr 140,000 was found to be a major component of the Triton X-100 insoluble pellet. This protein is a minor component of an equivalent pellet obtained from isolated microvilli prepared in the presence of EDTA. The significance of this Mr 140,000 polypeptide associated with the core residue of intestinal microvilli is discussed.  相似文献   

16.
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.  相似文献   

17.
The problem of the resolution and reconstitution of the inner mitochondrial membrane has been approached at three levels. (1) Starting with phosphorylating submitochondrial particles, a "resolution from without" can be achieved by stripping of surface components. The most extensive resolution was recently obtained with the aid of silicotungstate. Such particles require for oxidative phosphorylation the addition of several coupling factors as well as succinate dehydrogenase. (2) Starting with submitochondrial particles that have been degraded by trypsin and urea a resolution of the inner membrane proper containing an ATPase has been achieved. These experiments show that at least five components are required for the reconstitution of an oligomycin-sensitive ATPase: a particulate component, F 1, Mg++, phospholipids, and Fc. Morphologically, the reconstituted ATPase preparations resemble submitochondrial particles. (3) Starting with intact mitochondria individual components of the oxidation chain have been separated from each other. The following components were required for the reconstitution of succinoxidase: succinate dehydrogenase, cytochrome b\, cytochrome c 1, cytochrome c, cytochrome oxidase, phospholipids and Q 10. The reconstituted complex had properties similar to those of phosphorylating submitochondrial particles; i.e., the oxidation of succinate by molecular oxygen was highly sensitive to antimycin.  相似文献   

18.
The proton nuclear magnetic resonance spectra of various metal substituted derivatives of horse cytochrome c have been studied and compared to the spectra of native cytochrome c. The proteins studied were the cobalt(III), copper(II), iron(II), iron(III), manganese(III), nickel(II), and zinc(II) derivatives. Spectra of the diamagnetic cobalt(III), iron(II), and zinc(II) proteins were well-resolved and specific resonance assignments were made. All three proteins possessed a methionine ligand to the metal. The spectrum of cobalt(III) cytochrome c was investigated in some detail as this protein was used as a diagmagnetic control for iron(III) cytochrome c. Comparison of the spectra of cobalt(III) and iron(II) cytochromes c revealed that their conformations were very similar but the following conclusion could be made; the oxidation of cytochrome c is accompanied by a small conformation change.  相似文献   

19.
《BBA》2023,1864(3):148977
We have investigated NADH and succinate aerobic oxidation in frozen and thawed swine heart mitochondria. Simultaneous oxidation of NADH and succinate showed complete additivity under a variety of experimental conditions, suggesting that the electron fluxes originating from NADH and succinate are completely independent and do not mix at the level of the so-called mobile diffusible components. We ascribe the results to mixing of the fluxes at the level of cytochrome c in bovine mitochondria: the Complex IV flux control coefficient in NADH oxidation was high in swine mitochondria but very low in bovine mitochondria, suggesting a stronger interaction of cytochrome c with the supercomplex in the former. This was not the case in succinate oxidation, in which Complex IV exerted little control also in swine mitochondria. We interpret the data in swine mitochondria as restriction of the NADH flux by channelling within the I-III2-IV supercomplex, whereas the flux from succinate shows pool mixing for both Coenzyme Q and probably cytochrome c. The difference between the two types of mitochondria may be ascribed to different lipid composition affecting the cytochrome c binding properties, as suggested by breaks in Arrhenius plots of Complex IV activity occurring at higher temperatures in bovine mitochondria.  相似文献   

20.
1. A method for the isolation of a monodisperse ubiquinol-cytochrome c reductase (complex III) from beef heart mitochondria has been developed. The procedure consists of an enzyme solubilization in Triton X-100 followed by hydroxyapatite and gel chromatography.2. The minimum unit of the isolated complex is composed of 9 polypeptide subunits with Mr of 49000, 47000, 30000, 25000, 12000, 11000 and 6000. It contains 8 μmol of cytochrome b, 4 μmol of cytochrome c1 7–8 μmol of nonheme iron, corresponding to 3.5–4 μmol of the Rieske iron-sulfur protein, less than 1.0 μmol of ubiquinone and about 60 μmol of phospholipids, per g of protein. The specific detergent binding amounts to 0.2 g of Triton X-100 per g protein.3. Cytochrome b exhibits an α-absorbance maximum at 562 nm. In redox titrations it reveals two half-reduction potentials, i.e. ?10 and +100 mV, at pH 7.0. The absorbance maximum of cytochrome c1 lies at 553 nm and its half-reduction potential amounts to +250 mV.4. The reductase reveals electron-transferring activity with ubiquinol-1, -2, -3, and -9 as donor and cytochrome c as acceptor. The activity with ubiquinol-9 was analyzed according to the surface dilution scheme developed for the action of phospholipases. The molecular activity amounts to 75 mol of cytochrome c reduced per s at 20°C.5. A dissociation constant Ks of 5.5 mM has been determined for the Triton-solubilized enzyme: ubiquinol-containing micelle association. In this case the total concentration of ubiquinol plus Triton X-100 has been substituted for the concentration of binding areas on the ubiquinol-containing micelles. This substitution makes the reasonable assumption that the sum of ubiquinol concentration plus Triton X-100 is proportional to the number of available binding areas.6. A Km value of 0.025 was found for ubiquinol-9. This is an analog to the Michaelis constant and is expressed as mol fraction of ubiquinol in the ubiquinol-Triton micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号