首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On following N2-incorporation and subsequent metabolism in the lichen Peltigera canina using 15N as tracer, it was found, over a 30 min period, that greatest initial labelling was into NH 4 + followed by glutamate and the amide-N of glutamine. Labelling of the amino-N of glutamine, aspartate and alanine increased slowly. Pulse-chase experiments using 15N confirmed this pattern. On inhibiting the GS-GOGAT pathway using l-methionine-dl-sulphoximine and azaserine, 15N enrichment of glutamate, alanine and aspartate continued although labelling of glutamine was undetectable. From this and enzymic data, NH 4 + assimilation in the P. canina thallus appears to proceed via GS-GOGAT in the cyanobacterium and via GDH in the fungus; aminotransferases were present in both partners. The cyanobacterium assimilated 44% of the 15N2 fixed; the remainder was liberated almost exclusively as NH 4 + and then assimilated by fungal GDH.Abbreviations ADH alanine dehydrogenase - APT aspartate-pyruvate aminotransferase - AOA aminooxyacetate - GDH glutamate dehydrogenase - GOT glutamate-oxaloacetate aminotransferase - GOGAT glutamate synthase - GPT glutamate-pyruvate aminotransferase - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine  相似文献   

2.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

3.
The Nostoc in the cephalodia of the lichen Peltigera aphthosa Willd. fixed 15N2 and the bulk of the nitrogen fixed was continuously transferred from it to its eukaryotic partners (a fungus and a green alga, Coccomyxa sp.). Kinetic studies carried out over the first 30 min, after exposure of isolated cephalodia to 15N2, showed that highest initial 15N2-labelling was into NH 4 + . After 12 min little further increase in the NH 4 + label occurred while that in the amide group of glutamine and in glutamate continued to increase. The 15N-labelling of the amino group of glutamine and of aspartate increased more slowly, followed by an increase in the labelling of alanine. When total incorporation of 15N-label was calculated, the overall pattern was found to be rather similar except that, throughout the experiment, the total 15N incorporated into glutamate was about six times greater than that into the amide group of glutamine. Pulse chase experiments, in which 14N2 was added to cephalodia previously exposed to 15N2, showed that the NH 4 + pool rapidly became depleted of 15N-label, followed by decreases in the labelling of glutamate, the amide group of glutamine and aspartate. The 15N-labelling of alanine, however, continued to increase for a period. When isolated cephalodia were treated with L-methionine-SR-sulphoximine, an inhibitor of glutamine synthetase (EC 6.3.1.2), and azaserine, an inhibitor of glutamate synthase (EC 2.6.1.53), there was no detectable labelling in glutamine although the 15N-labelling of glutamate increased unimpaired. On treating the cephalodia with amino-oxyacetate, an inhibitor of aminotransferase activity, the alanine pool decreased. Evidence was obtained that glutamine synthetase and glutamate synthase were located in the Nostoc, and that glutamate dehydrogenase (EC 1.4.1.4) and various amino-transferases were located in the cephalodial fungus. Possible implications of these findings are discussed.Abbreviations MSX L-methionine-SR-sulphoximine - AOA amino-oxyacetate - HEPES N-2-hydroxymethylpiperazine-N-2-ethane sulphonic acid - Tris tris-(hydroxymethyl) methylamine - GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - GPT glutamate-pyruvate aminotransferase - APT aspartate-pyruvate aminotransferase - ADH alanine dehydrogenase - GOT glutamate-oxaloacetate aminotransferase  相似文献   

4.
The pathways of assimilation of ammonium by pure cultures of symbiont-free Anthoceros punctatus L. and the reconstituted Anthoceros-Nostoc symbiotic association were determined from time-course (5–300 s) and inhibitor experiments using 13NH 4 + . The major product of assimilation after all incubation times was glutamine, whether the tissues were cultured with excess ammonium or no combined nitrogen. The 13N in glutamine was predominantly in the amide-nitrogen position. Formation of glutamine and glutamate by Anthoceros-Nostoc was strongly inhibited by either 1mM methionine sulfoximine (MSX) or 1 mM exogenous ammonium. These data are consistent with the assimilation of 13NH 4 + and formation of glutamate by the glutamine synthetase (EC 6.3.1.2)-glutamate synthase (EC 1.4.7.1) pathway in dinitrogen-grown Anthoceros-Nostoc. However, in symbiont-free Anthoceros, grown with 2.5 mM ammonium, formation of glutamine, but not glutamate, was decreased by either MSX or exogenous ammonium. These results indicate that during short incubation times ammonium is assimilated in nitrogenreplete Anthoceros by the activities of both glutamine synthetase and glutamate dehydrogenase (EC 1.4.1.2). In-vitro activities of glutamine synthetase were similar in nitrogen-replete Anthoceros and Anthoceros-Nostoc, indicating that the differences in the routes of glutamate formation were not based upon regulation of synthesis of the initial enzyme of the glutamine synthetase-glutamate synthase pathway. When symbiont-free Anthoceros was cultured for 2 d in the absence of combined nitrogen, total 13NH 4 + assimilation, and glutamine and glutamate formation in the presence of inhibitors, were similar to dinitrogen-grown Anthoceros-Nostoc. The routes of immediate (within 2 min) glutamate formation and ammonium assimilation in Anthoceros were apparently determined by the intracellular levels of ammonium; at low levels the glutamine synthetase-glutamate synthase pathway was predominant, while at high levels independent activities of both glutamine synthetase and glutamate dehydrogenase were expressed.  相似文献   

5.
Anabaena azollae was isolated fromAzolla caroliniana by the gentle roller method and differential centrifugation. Incubation of suchAnabaena preparations for 10 min with [13N]N2 resulted in the formation of four radioactive compounds; ammonium, glutamine, glutamate and alanine. Ammonium accounted for 66% of the total radioactivity recovered and 58% of the ammonium was in an extracellular fraction. Since essentially no extracellular13N-labeled organic compounds were found, it appears that ammonium is the compound most probably made available toAzolla during dinitrogen-dependent growth of the association.The kinetics of incorporation of exogenous13NH 4 + into glutamine and glutamate were characteristic of a precursor (glutamine)-product (glutamate) relationship and consistent with assimilation by the glutamine synthetase-glutamate synthase pathway. The results of experiments using the glutamine synthetase inhibitor, methionine sulfoximine, the glutamate synthase inhibitor, diazo-oxonorleucine, and increasing the ammonium concentration to greater than 1 mM, provided evidence for assimilation primarily by the glutamine synthetase-glutamate synthase pathway with little or no contribution from biosynthetic glutamate dehydrogenase.While showing that N2 fixation and NH 4 + assimilation were not tightly coupled metabolic processes in symbioticAnabaena, these results reflect a composite picture and do not indicate the extent to which ammonium assimilatory enzymes might be regulated in filaments associated with specific stages in theAzolla-Anabaena developmental profile.Non-standard abbreviations DON 6-Diazo-5-oxo-l-norleucine - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSX l-methionine-Dl-sulfoximine  相似文献   

6.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

7.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

8.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

9.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

10.
A release of ammonium by non-nitrogen-fixing Anabaena cylindrica (grown on NH4Cl) in the presence of MSX (methionine sulfoximine) and absence of any external nitrogen source was found. In the light the release was maximal at 0.2 mM MSX, a concentration which did not affect net CO2 fixation nor the glycollate excretion, but inhibited the glutamine synthetase activity and the reassimilation of ammonium. It is suggested that the major source of the ammonium released is the photorespiratory conversion of glycine to serine as (1) the release was stimulated by increase in light intensity, (2) high CO2 (3%) lowered the release, if not given as a longer pretreatment (as CO2 or HCO 3 - ) when a stimulation was observed, (3) glyoxylate and glutamate stimulated the release, the latter compound particularly under nitrogen-deficient conditions and (4) isonicotinic acid hydrazide caused a reduced release of ammonium. Furthermore, a substantial part of the ammonium released by N2-fixing A. cylindrica in presence of MSX may thus originate from the glycollate pathway. The data show that in the light the glycine to serine conversion is active in cyanobacteria with a concomitant production of ammonium which is assimilated by glutamine synthetase.Abbreviations MSX L-methionine-Dl-sulfoximine - INH isonicotinic acid hydrazide - RuDP ribulose 1,5-diphosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - GS glutamine synthetase - GOGAT glutamate synthase - DTT Dl-dithiothreitol  相似文献   

11.
Rhodopseudomonas globiformis strain 7950 grew with a variety of amino acids, urea, or N2 as sole nitrogen sources. Cultures grown on N2 reduced acetylene to ethylene; this activity was absent from cells grown on nonlimiting NH 4 + . Glutamate dehydrogenase could not be detected in extracts of cells of strain 7950, although low levels of an alanine dehydrogenase were present. Growth ofR. globiformis on NH 4 + was severely inhibited by the glutamate analogue and glutamine synthetase inhibitor, methionine sulfoximine. High levels of glutamine synthetase (as measured in the -glutamyl transferase assay) were observed in cell extracts of strain 7950 regardless of the nitrogen source, although N2 and amino acid grown cells contained somewhat higher glutamine synthetase contents than cells grown on excess NH 4 + . Levels of glutamate synthase inR. globiformis were consistent with that reported from other phototrophic bacteria. Both glutamate synthase and alanine dehydrogenase were linked to NADH as coenzyme. We conclude thatR. globiformis is capable of fixing N2, and assimilates NH 4 + primarily via the glutamine synthetase/glutamate synthase pathway.Abbreviations GS glutamine synthetase - GOGAT Glutamineoxoglutarate aminotransferase - GDH Glutamate dehydrogenase - ADH Alanine dehydrogenase - MSO Methionine sulfoximine  相似文献   

12.
Nitrate uptake and nitrite efflux patterns in Nostoc MAC showed a rapid phase followed by their saturation. Nitrite efflux was maximum in nitrate medium whereas the cells incubated in N2 and NH 4 + media exhibited a decreased nitrite efflux activity. The simultaneous presence of NH 4 + and nitrate significantly decreased nitrite efflux. L-Methionine-Dl-sulphoximine (MSX) prevented inhibition of nitrite efflux by NH 4 + . In the dark there was negligible nitrite efflux, whereas illumination increased the rate of nitrite efflux significantly. The nitrite efflux system was maximally operative at pH 8.0, 30°C and a photon fluence rate of 50 mol m-2. s-1. These results confirm that (i) the nitrite efflux system in Nostoc MAC is dependent upon nitrate uptake and assimilation and is repressible by NH 4 + ; (ii) NH 4 + itself is not the actual repressor of nitrite efflux; a product of NH 4 + assimilation via glutamine synthetase (GS) is required for repression to occur; (iii) the catalytic function of GS does not appear to be involved in nitrate assimilation-dependent nitrite efflux, and (iv) the optimum pH, temperature and illumination for maximum nitrite efflux were found to be 8.0, 30°C and 50mol m-2. s respectively.B.B. Singh, P.K. Pandey and P.S. Bisen are with the Department of Microbiology, Barkatullah University. Bhopal 462026, India. S.Singh is with the Department of Microbiology, School of Life Sciences, North Maharashtra University, Jalgaon, India  相似文献   

13.
A. N. Rai  P. Lindblad  B. Bergman 《Planta》1986,169(3):379-381
Using the ammonium analogue 14CH3NH 3 + , ammonium transport was studied in the cyanobiont cells freshly isolated from the root nodules of Cycas revoluta. An L-methionine-dl-sulphoximine (MSX)-insensitive ammonium-transport system, which was dependent on membrane potential (), was found in the cyanobiont. However, the cyanobiont was incapable of metabolizing exogenous 14CH3NH 3 + or NH 4 + because of the absence of another ammonium-transport system responsible for the uptake of ammonium for assimilation via glutamine synthetase (EC 6.3.1.2). Such a modification seems to be the result of symbiosis because the free-living cultured isolate, Anabaena cycadeae, has been shown to possess both the ammonium-transport systems.Abbreviations and symbol ATS/ATSs ammonium transport system/systems - Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-dl-sulphoximine - membrane potential  相似文献   

14.
Extractable glutamine synthetase activity of the cyanobacterium Anabaena cylindrica was reduced by approximately 50% when N2-fixing cultures were treated with 10 mM NH 4 + or were placed in darkness. The deactivated enzyme could be rapidly reactivated (within 5 min) by adding 40 mM 2-mercaptoethanol to the biosynthetic reaction mixture. The enzyme could also be reactivated in vivo by replacing the culture in light or by removing NH 4 + . When the enzyme was deactivated by simultaneously adding NH 4 + and placing the culture in darkness, reactivation occurred on reillumination and removal of NH 4 + . The removal of NH 4 + in darkness did not result in reactivation. On in vitro reactivation of glutamine synthetase from dark or NH 4 + -treated cultures the maximum glutamine synthetase activity observed frequently exceeded that of glutamine synthetase extracted from untreated cultures. Anacystis nidulans showed a similar type of reversible dark deactivation to A. cylindrica but Plectonema boryanum and a Nostoc did not. With A. cylindrica, a direct positive correlation between the size of the intracellular pool of glutamate and biosynthetic glutamine synthetase activity occurred during light/dark shifts, and on treatment with NH 4 + . The changes in activity of glutamine synthetase in A. cylindrica in response to light resemble in some respects the light modulation of enzymes of the oxidative and reductive pentose phosphate pathways noted in cyanobacteria by others.  相似文献   

15.
The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.Abbreviations CP carbamoyl phosphate - EDTA ethylenedi-amine tetraacetic acid - PEP phosphoenolpyruvate - RuBP ribulose 1,5 bisphosphate  相似文献   

16.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

17.
In unicellular algae, ammonium can be assimilated into glutamate through the action of glutamate dehydrogenase (GDH) or into glutamine through the sequential activities of glutamine synthetase and glutamate 2-oxoglutarate amidotransferase (GS-GOGAT pathway). We have shown that the first radio-labeled product of assimilation of 13NH4+ (t1/2= 10 min) was glutamine in the marine diatom Thalassiosira pseudonana (Hustedt). When GS-GOGAT was inhibited with methionine sulfoximine, the incorporation of radioactivity into both glutamine and glutamate was blocked, implying that the radio-labeled glutamate is formed from glutamine. Glutamine was also the first labeled product when the intracellular concentration of ammonium was elevated by preincubation with unlabeled ammonium. The results indicate that the GS-GOGAT pathway is the primary pathway for the assimilation of nitrogen in T. pseudonana.  相似文献   

18.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

19.
Nitrogen-starved cells of Frankia strain HFPArl3 incorporated [13N]-labeled ammonium into glutamine serine (glutamate, alanine, aspartate), after five-minute radioisotope exposures. High initial endogenous pools of glutamate were reduced, while total glutamine increased, during short term NH inf4 sup+ incubation. Preincubation of cells in methionine sulfoximine (MSX) resulted in [13N]glutamine reduced by more than 80%, while [13N]glutamate and [13N]alanine levels increased. The results suggest that glutamine synthetase is the primary enzyme of ammonium assimilation, and that glutamate dehydrogenase and alanine dehydrogenase may also function in ammonium assimilation at low levels. Efflux of [13N]serine and lesser amounts of [13N]glutamine was detected from the Frankia cells. The identity of both Ser and Gln in the extracellular compartment was confirmed with gas chromatography/mass spectrometry. Serine efflux may be of significance in nitrogen transfer in Frankia.Abbreviations Pthr phosphothreonine - Aad -amino-adipate - MSX methionine sulfoximine  相似文献   

20.
Summary Net CO2 fixation inLemna gibba L. was inhibited by 0.5 mM L-methionine D,L-sulfoximine (MSX) both under photorespiratory conditions (21% O2) and in 2% O2. The inhibition was noticeably delayed by addition of 5 mM glutamine. Glutamine also delayed MSX-induced inactivation of glutamine synthetase. An increase in intracellular NH 4 + concentration was noted in the presence of MSX only, and in the presence of 10 mM NH 4 + only. However, presence of 10 mM NH 4 + did not cause any inhibition of CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号