首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract.  1. Optimal foraging models ultimately predict that female parasitoids should exploit rich host patches for longer than poorer ones. At the proximate level, mechanistic models and experimental studies show that parasitoids use both chemicals produced by their hosts and direct encounters with their hosts to estimate patch quality. Although it has been extensively studied in the context of host location, the use of herbivore-induced plant response by insect parasitoids has never been considered in the context of patch time allocation.
2. In this study, the respective roles of herbivore-induced plant response and direct contact with hosts on the foraging behaviour of Lysiphlebus testaceipes females on an aphid patch were quantified. For this, the level of herbivore-induced plant response and the number of aphids on the leaf bearing the patch were manipulated independently. Different levels of plant response were obtained by varying the duration of infestation on another leaf.
3. Parasitoid residence time and number of attacks increased with both the level of plant response and the number of aphids.
4. These results suggest that L. testaceipes females use the combination of herbivore-induced response of plants and direct encounters with hosts to assess patch quality and adjust their patch use behaviour.  相似文献   

2.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

3.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

4.
The effect of experiences, such as contact with honeydew, rejections of hosts, and ovipositions in hosts, and of temperature on the time allocation of individualEncarsia formosa female parasitoids on tomato leaflets have been studied. Behavioral records were analyzed by means of the proportional hazards model. Analyses were carried out at two levels: (1) the tendency of leaving and (2) the tendency of changing from one leaf side to another. The patch-leaving behavior ofE. formosa can be described by a stochastic threshold mechanism, which is characterized by a certain tendency (probability per time) to leave. The median time from being placed on the leaflet or, if it occurred, from the latest encounter with a host until leaving was 18.6 min. The median time for changing from one leaf side to the other was initially 11.6 min and dropped to 5.7 min after both leaf sides had been visited. The effect of temperature, ranging from 20 to 30°C, was negligible. The presence of honeydew as well as the first oviposition in an unparasitized host decreased the tendency to leave, thus increasing the giving up time (GUT) since the latest encounter with a host. Encounters with parasitized hosts did not affect the GUT since latest encounter; as a result, the total residence time increased. After the first oviposition in an unparasitized host the tendency of changing from the lower leaf side on which hosts were present to the upper side was decreased. The presence of honeydew did not affect the tendency of changing leaf sides.  相似文献   

5.
The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.  相似文献   

6.
Biological control, as a major component of pest management strategies, uses natural biological agents to reduce pest populations. Studying the interaction among Aphis craccivora and its parasitoids including, Lysiphlebus fabarum, Binodoxys acalephae, and Aphidius matricariae in 2016 and 2017 in Tehran Parke-Shahr, showed positive, significant correlations in all cases between the densities of three parasitoid species and that of aphid nymphs and adults. The density of the parasitoids increased by increasing the density of the aphids. The parasitoids showed aggregative behavior in response to different densities of the host. There was a positive density-dependent correlation between the density of A. craccivora and rate of parasitism. Parasitism rates of nymphs and adult aphids by L. fabarum, B. acalephae, and A. matricariae increased or decreased along with decline or increase in the population of the aphid host. In 2016 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 46.82, 23.09, and 17.16%, respectively. In 2017 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 48.97, 21.77, and 15.06%, respectively. So, given the accordance between changes in aphid population and that of parasitoids, and parasitoids’ efficacy in Tehran’s polluted air, they can be used as biological agents in the management of A. craccivora population.  相似文献   

7.
Orius sauteri (Poppius) (Heteroptera: Anthocoridae) is a polyphagous predator used as a biological control agent of palm thrips, Thrips palmi (Karny) (Thysanoptera: Thripidae). We studied O. sauteri's searching efficiency, time allocation on a leaf, leaving tendency, and attacking of prey. Approximately 78% of the encountered prey was eaten. Searching for prey was concentrated for 86% of the time on the lower leaf side, where palm thrips are usually found. Patch residence times on empty leaves were different from those on leaves with T. palmi larvae. Walking activity was not affected by the thrips density, and walking took place during 64% of the total search time. The leaving tendency of O. sauteri was affected by the time from patch entry and the presence or absence of palm thrips, but not by the thrips density. If prey were present, the leaving tendency decreased (multiplication factor 0.327), resulting in longer giving‐up times than when no prey was present. The fact that the leaving tendency increases when patch exploitation lasts longer suggests that not much time is wasted on patches where encounters with prey are scarce.  相似文献   

8.
The effect of simulated plant stress and parasitism by Aphelinus abdominalis (Dalman) on the mobility of four species of aphids was investigated. The aphids were placed on water stressed potted plants or on excised leaf segments on dry or moist filter-paper in Petri dishes. Winter wheat (Triticum aestivum) was infested with Metopolophium dirhodum (Walker), Sitobion avenae (F.) and Rhopalosiphum padi (L.) (segments only), aubergine (Solanum melongena) leaf segments with Macrosiphum euphorbiae (Thomas). The aphids that moved off the plants were removed and their development stage determined at 24-h (drought-stressed plants) or 3-h (leaf segments) intervals. On intact plants, aphid larvae were reluctant to move, and only moved after moulting into adults. On cut leaves, young 1st and 2nd instar larvae were more reluctant to move than 3rd and 4th instar larvae and adults. The numbers moving were initially positively correlated with aphid population density, and in M. euphorbiae occurred mainly during the night. Depending on aphid species and parasitoid age, parasitism by A. abdominalis retarded or accelerated movement, but the differences between young and old larvae and adults persisted after parasitism. A. abdominalis lays male eggs in small hosts and female eggs in large hosts. Consequently, its sex ratio was affected by differential movement of the host aphids of the male and female parasitoids. Old larvae and adult aphids readily moved and carried off female parasitoids, while the small aphids were more likely to remain and give rise to male-biased sex ratios.  相似文献   

9.
We evaluated the functional responses of two aphid parasitoids: Aphidius colemani on the green peach aphid Myzus persicae (Hemiptera: Aphididae), and Aphelinus asychis on M. persicae and the potato aphid, Macrosiphum euphorbiae (Hemiptera: Aphididae). Parasitoid oviposition occurred at host densities of 5, 10, 20, 30, 50, 80 or 100 aphids for A. colemani and 5, 10, 20, 30 or 50 aphids for A. asychis. More M. persicae were parasitized by A. colemani than by A. asychis at an aphid density of 50. Among the three types of functional response, type III best described the parasitoid response to the host densities both in A. colemani and A. asychis. The estimated handling time was shorter for A. colemani than for A. asychis (0.017 and 0.043 d, respectively). The proportion of aphids that were parasitized exhibited the same characteristic curve among the three host-parasitoid combinations: a wave form that appeared to be a composite of a decelerating (as in type II) response at low host density and an accelerating-and-decelerating (as in type III) response at medium to high host density. We hypothesize that the novel host species (and its host plant), density-dependent superparasitism, and/or density-dependent host-killing may have induced the modified type III response.  相似文献   

10.
3种寄主上桃蚜的选择性及形态分化   总被引:4,自引:0,他引:4  
桃蚜是一种重要的农业害虫,寄主广泛,种下分化复杂。以采自黄土高原旱作区桃树、烟草、甘蓝上的桃蚜为研究对象,通过叶片选择法、传统比较形态测定法研究了3种寄主上桃蚜的选择性及形态分化。结果表明:在3种寄主同时存在的情况下,烟草上的桃蚜嗜食烟草,表现为63.5%的桃蚜选择烟草叶,13.8%选择甘蓝叶,8.2%选择桃叶,而甘蓝和桃树上的桃蚜对原寄主没有表现出明显的嗜好性;从形态指标来看,3种寄主上的桃蚜在体长、触角末节长度、后足腿节长度、触角与体长的比例方面存在显著差异(P0.05),说明这几个特征可以作为区分这3种寄主上桃蚜的依据。综合分析可以初步认为黄土高原旱作区烟草上的桃蚜可能形成了寄主专化型-烟草型。  相似文献   

11.
We used aphids (Aphidae) as a representative hemimetabolous host family to investigate patterns of parasitoid (Aphidiine) assemblage size. The aphidiine assemblages from 477 aphid species were used to estimate average assemblage size and the influence of eight ecological and taxonomic variables. Aphids species support an average of 1.7 aphidiine species. Aphid subfamily and invasion status (native or exotic) were the most important determinants of parasitoid richness, explaining 28% of the deviance in aphidiine assemblage size. Aphids within the largest aphid subfamily, the Aphidinae, support larger parasitoid assemblages than those in other subfamilies. Parasitoid diversity was also highest on exotic aphid hosts (within the Aphidinae) and on hosts in developed habitats (agricultural or urban), though the latter effect is weak. Patterns related to aphid food plant architecture were influenced by an interaction with aphid invasion status; parasitoid diversity drops with increasing architectural complexity on exotic aphids, whereas the diversities on native aphid hosts are similar on different plant types. Weak effects were also found for aphid food plant alternation (whether or not aphids switch hosts seasonally) and climate (annual range in temperature); alternating aphids support more parasitoids than non-alternating hosts, and parasitoid assemblage size is lowest in warm climates. Taxonomic isolation of aphids at the generic level showed no significant relationship with parasitoid diversity. Finally, in contrast to parasitoid assemblages on holometabolous hosts, sample size effects were weak for aphids, possibly due to the narrow host ranges of aphidiines. Received: 22 November 1997 / Accepted: 7 March 1998  相似文献   

12.
Abstract 1. Patch time allocation has been mostly studied in female parasitoids exploiting patches of hosts. Different parameters such as oviposition, host encounters, patch quality, etc. have been repeatedly shown to modify the time females invest on hosts. 2. Male parasitoids are expected to maximise their lifetime fitness by maximising the number of females inseminated during their life. Because they can be sperm and/or time limited, they should optimise their time allocation on emergence patches. 3. Patch time allocation thus appears to be an important question for both male and female parasitoids. 4. In this study, we determined the parameters used by males of the egg parasitoid Trichogramma turkestanica to decide when to leave the emergence patch. Among the different patch‐leaving parameters tested, only contacts with parasitised hosts and presence of virgin females significantly influenced the patch‐leaving tendency. 5. Our results suggest that males express behaviours that could enable them to optimise their patch exploitation time, as females do, but using different strategies.  相似文献   

13.
  • 1 The rosy apple aphid Dysaphis plantaginea (Passerini) (Homoptera: Aphididae) is a pest of economic importance to the apple industry worldwide, particularly in organic apple orchards where no acceptable controls are available. In the Similkameen Valley of British Columbia, Canada, the rosy apple aphid population size varies widely between orchards and between years. To explain this variation, potential environmental correlates of aphid density were evaluated. The architecture of the alternate host was also evaluated for its effect on rosy apple aphid summer survival and reproduction.
  • 2 The percentage of trees infested by rosy apple aphids among orchards was in the range 8–94% for trees having at least one cluster with more than ten aphids in 2007 and in the range 0–39% in 2008.
  • 3 A general linear model correlating aphid densities to the environmental variables of abundance of the alternate host (plantain Plantago spp.), foliar nitrogen, tree age and planting density, and reduced by stepwise regression, indicated that foliar nitrogen and tree age explained 33% of the variation. Abundance of the summer, alternate food plant, plantain, was not related to later aphid densities on apple trees.
  • 4 Plantain architecture, however, influenced aphid numbers and 25‐fold more aphids were found on low‐lying plantain leaves than on more upright leaves. Experimental manipulation of leaf angle and leaf size showed that significantly more aphids occurred on low angle, large leaves. Finally, mowing that encouraged low lying plants prior to spring aphid migration was associated with a four‐fold greater number of both winged and wingless aphids on the plantain.
  相似文献   

14.
Increasing ultraviolet radiation (UV) has led to greater interest in its current and potential effects on organisms, including herbivorous insects. Here we report the short-term effects of UV on soybean aphids (Aphis glycines Matsumura), a common phytophagous pest of soybeans. We used two complementary approaches to examine how modifying UV radiation affects this phloem-feeding herbivore via changes to soybean aphid densities and their within plant distribution. We found that artificially adding UV in a lab setting decreased soybean aphid population size compared to a low UV control; however, blocking UV radiation in the field had minimal effects on aphid density. Further observations suggest that soybean aphid location could mediate UV effects; feeding on the underside of leaves may shield aphids from some harmful effects of UV. Our results demonstrate the potential importance of UV to insect herbivores and how behavior may influence such effects.  相似文献   

15.
1. Changing plant composition in a community can have profound consequences for herbivore and parasitoid population dynamics. To understand such effects, studies are needed that unravel the underlying behavioural decisions determining the responses of parasitoids to complex habitats. 2. The searching behaviour of the parasitoid Diadegma semiclausum was followed in environments with different plant species composition. In the middle of these environments, two Brassica oleracea plants infested by the host Plutella xylostella were placed. The control set-up contained B. oleracea plants only. In the more complex set-ups, B. oleracea plants were interspersed by either Sinapis alba or Hordeum vulgare. 3. Parasitoids did not find the first host-infested plant with the same speed in the different environments. Sinapis alba plants were preferentially searched by parasitoids, resulting in fewer initial host encounters, possibly creating a dynamic enemy-free space for the host on adjacent B. oleracea plants. In set-ups with H. vulgare, also, fewer initial host encounters were found, but in this case plant structure was more likely than infochemicals to interfere with the searching behaviour of parasitoids. 4. On discovering a host-infested plant, parasitoids located the second host-infested plant with equal speed, demonstrating the effect of experience on time allocation. Further encounters with host-infested plants that had already been visited decreased residence times and increased the tendency to leave the environment. 5. Due to the intensive search of S. alba plants, hosts were encountered at lower rates here than in the other set-ups. However, because parasitoids left the set-up with S. alba last, the same number of hosts were encountered as in the other treatments. 6. Plant composition of a community influences the distribution of parasitoid attacks via its effects on arrival and leaving tendencies. Foraging experiences can reduce or increase the importance of enemy-free space for hosts on less attractive plants.  相似文献   

16.
Learning, defined as changes in behavior that occur due to past experience, has been well documented for nearly 20 species of hymenopterous parasitoids. Few studies, however, have explored the influence of learning on population-level patterns of host use by parasitoids in field populations. Our study explores learning in the parasitoid Aphidius ervi Haliday that attacks pea aphids, Acyrthosiphon pisum (Harris). We used a sequence of laboratory experiments to investigate whether there is a learned component in the selection of red or green aphid color morphs. We then used the results of these experiments to parameterize a model that examines whether learned behaviors can explain the changes in the rates of parasitism observed in field populations in South-central Wisconsin, USA. In the first of two experiments, we measured the sequence of host choice by A. ervi on pea aphid color morphs and analyzed this sequence for patterns in biased host selection. Parasitoids exhibited an inherent preference for green aphid morphs, but this preference was malleable; initial encounters with red aphids led to a greater chance of subsequent orientation towards red aphids than predicted by chance. In a second experiment, we found no evidence that parasitoids specialize on red or green morphs; for the same parasitoids tested in trials separated by 2 h, color preference in the first trial did not predict color preference in the second, as would be expected if they differed in fixed preferences or exhibited long-term (> 2 h) learning. Using data from the two experiments, we parameterized a population dynamics model and found that learning of the magnitude observed in our experiments leads to biased parasitism towards the most common color morph. This bias is sufficient to explain changes in the ratio of aphid color morphs observed in field sites over multiple years. Our study suggests that for even relatively simple organisms, learned behaviors may be important for explaining the population dynamics of their hosts.  相似文献   

17.
Insecticide-resistant clones of the peach-potato aphid, Myzus persicae (Sulzer), have previously been shown to have a reduced response to aphid alarm pheromone compared to susceptible ones. The resulting vulnerability of susceptible and resistant aphids to attack by the primary endoparasitoid, Diaeretiella rapae (McIntosh), was investigated across three spatial scales. These scales ranged from aphids confined on individual leaves exposed to single female parasitoids, to aphids on groups of whole plants exposed to several parasitoids. In all experiments, significantly fewer aphids from insecticide-susceptible clones became parasitised compared to insecticide-resistant aphids. Investigations of aphid movement showed at the largest spatial scale that more susceptible aphids than resistant aphids moved from their inoculation leaves to other leaves on the same plant after exposure to parasitoids. The findings imply that parasitoids, and possibly other natural enemies, can influence the evolution and dynamics of insecticide resistance through pleiotropic effects of resistance genes on important behavioural traits.  相似文献   

18.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

19.
The distribution and mobility of infected aphid hosts can have a great effect on the ability of a pathogen to spread throughout a population. The distribution of dead and living pea aphids (Acyrthosiphon pisum) infected with Pandora neoaphidis was compared with that of their healthy conspecifics. Infected aphids were significantly more likely to be found on the undersides of alfalfa leaves and off of the plants than were healthy aphids. These two shifts in microhabitat location have potential costs and benefits for both the host and the pathogen.  相似文献   

20.
Two-day-old mated females ofAphidius ervi Haliday andMonoctonus paulensis (Ashmead) were each provided with two sequential host patches. Patches were comprised of plastic petri dishes containing either 15 pea aphids,Acyrthosiphum pisum (Harris), or 15 alfalfa aphids,Macrosiphum creelii Davis. Both wasp species parasitized more hosts in patches containing pea aphids than in those containing alfalfa aphids, regardless of sequence. Females ofA. ervi also laid more eggs per aphid in patches containing pea aphids than in patches containing alfalfa aphids. When both patches contained alfalfa aphids,M. paulensis females parsitized more aphids in the second patch than in the first. Fewer alfalfa aphids were parasitized in the second patch when the first patch contained pea aphids, and fewer eggs were laid per alfalfa aphid. Parasitoid females of both species exhibited consistently higher rates of oviposition into their preferred host species and adjusted their reproductive allocation to hosts and host patches as a function of their experience in previous patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号