首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
介绍了本体的概念和基本特点, 总结了领域本体的一般构建流程和评估方法, 并举例说明了生物医学领域本体在生物学对象注释、富集分析、数据整合、数据库构建、图书馆建设、文本挖掘等方面的实际应用情况, 整理了目前常用的生物医学领域本体数据库、本体描述语言和本体编辑软件, 最后探讨了目前生物医学领域本体研究中普遍存在的问题和该领域未来的发展方向.  相似文献   

2.
Text mining and ontologies in biomedicine: making sense of raw text   总被引:1,自引:0,他引:1  
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, retrieve and manage the reported information without text mining, which aims to automatically distill information, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as conceptual models, provide the necessary framework for semantic representation of textual information. The principal link between text and an ontology is terminology, which maps terms to domain-specific concepts. This paper summarises different approaches in which ontologies have been used for text-mining applications in biomedicine.  相似文献   

3.
目的:近年来,随着生物医学领域文献数量的急骤增长,大量隐含的规律和新知被掩埋在浩如烟海的文献之中,而将文本挖掘技术应用于生物医学领域则可以对海量生物医学文献数据进行整合、分析,从而获得有价值的信息,提高人们对生物医学现象的认识。本文就我国近十年来文本挖掘技术在生物医学领域的应用现状进行文献计量学分析,旨在为我国科研工作者对该领域的进一步研究提供参考。方法:对国内正式发表的生物医学领域文本挖掘相关文献进行检索和筛选,分别从年度变化、地区分布、研究机构、期刊来源、研究领域等方面进行分析。结果:国内生物医学文本挖掘文献总量呈上升趋势,主要集中在挖掘算法的研究和文本挖掘技术在中医药及系统生物学领域的应用方面;北京、上海、广东等地的研究处于领先地位。结论:相比其他较为成熟的研究课题来说,目前文本挖掘技术在生物医学中的应用在国内还属于一个比较新的研究领域,但国内对该领域的认识正不断提高、研究正不断深入,初步形成了一批在该领域的核心研究地区、核心研究机构和核心研究领域,而对其进一步的研究,必将为生物医学领域的发展注入新的活力。  相似文献   

4.
Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.  相似文献   

5.
Categorization of biomedical articles is a central task for supporting various curation efforts. It can also form the basis for effective biomedical text mining. Automatic text classification in the biomedical domain is thus an active research area. Contests organized by the KDD Cup (2002) and the TREC Genomics track (since 2003) defined several annotation tasks that involved document classification, and provided training and test data sets. So far, these efforts focused on analyzing only the text content of documents. However, as was noted in the KDD'02 text mining contest-where figure-captions proved to be an invaluable feature for identifying documents of interest-images often provide curators with critical information. We examine the possibility of using information derived directly from image data, and of integrating it with text-based classification, for biomedical document categorization. We present a method for obtaining features from images and for using them-both alone and in combination with text-to perform the triage task introduced in the TREC Genomics track 2004. The task was to determine which documents are relevant to a given annotation task performed by the Mouse Genome Database curators. We show preliminary results, demonstrating that the method has a strong potential to enhance and complement traditional text-based categorization methods.  相似文献   

6.
Text mining can support the interpretation of the enormous quantity of textual data produced in biomedical field. Recent developments in biomedical text mining include advances in the reliability of the recognition of named entities (NEs) such as specific genes and proteins, as well as movement toward richer representations of the associations of NEs. We argue that this shift in representation should be accompanied by the adoption of a more detailed model of the relations holding between NEs and other relevant domain terms. As a step toward this goal, we study NE-term relations with the aim of defining a detailed, broadly applicable set of relation types based on accepted domain standard concepts for use in corpus annotation and domain information extraction approaches.  相似文献   

7.
Current advances in high-throughput biology are accompanied by a tremendous increase in the number of related publications. Much biomedical information is reported in the vast amount of literature. The ability to rapidly and effectively survey the literature is necessary for both the design and the interpretation of large-scale experiments, and for curation of structured biomedical knowledge in public databases. Given the millions of published documents, the field of information retrieval, which is concerned with the automatic identification of relevant documents from large text collections, has much to offer. This paper introduces the basics of information retrieval, discusses its applications in biomedicine, and presents traditional and non-traditional ways in which it can be used.  相似文献   

8.
《Epigenetics》2013,8(9):982-986
Recent advances in molecular biology and computational power have seen the biomedical sector enter a new era, with corresponding development of Bioinformatics as a major discipline. Generation of enormous amounts of data has driven the need for more advanced storage solutions and shared access through a range of public repositories. The number of such biomedical resources is increasing constantly and mining these large and diverse data sets continues to present real challenges. This paper attempts a general overview of currently available resources, together with remarks on their data mining and analysis capabilities. Of interest here is the recent shift in focus from genetic to epigenetic/epigenomic research and the emergence and extension of resource provision to support this both at local and global scale. Biomedical text and numerical data mining are both considered, the first dealing with automated methods for analyzing research content and information extraction, and the second (broadly) with pattern recognition and prediction. Any summary and selection of resources is inherently limited, given the spectrum available, but the aim is to provide a guideline for the assessment and comparison of currently available provision, particularly as this relates to epigenetics/epigenomics.  相似文献   

9.
Recent advances in molecular biology and computational power have seen the biomedical sector enter a new era, with corresponding development of Bioinformatics as a major discipline. Generation of enormous amounts of data has driven the need for more advanced storage solutions and shared access through a range of public repositories. The number of such biomedical resources is increasing constantly and mining these large and diverse data sets continues to present real challenges. This paper attempts a general overview of currently available resources, together with remarks on their data mining and analysis capabilities. Of interest here is the recent shift in focus from genetic to epigenetic/epigenomic research and the emergence and extension of resource provision to support this both at local and global scale. Biomedical text and numerical data mining are both considered, the first dealing with automated methods for analyzing research content and information extraction, and the second (broadly) with pattern recognition and prediction. Any summary and selection of resources is inherently limited, given the spectrum available, but the aim is to provide a guideline for the assessment and comparison of currently available provision, particularly as this relates to epigenetics/epigenomics.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号