首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
温州蜜柑叶片光合作用光抑制的保护机理   总被引:30,自引:12,他引:18  
晴天条件下,使用便携式调制荧光仪和分光光度计观察了温州蜜柑叶片光合作用光抑制发生过程中几个主要荧光参数(初始荧光F0、最大荧光Fm、PSⅡ的光化学效率Fv/Fm、非光化学猝灭qN及其快相qNf和慢相qNs)、电子传递速率(ETR)和玉米黄素相对含量的日变化,结果表明,随着光强的增强,ETR、qN及其qNr与qNs以及玉米黄素相对含量升高,Fv/Fm、Fm和F0下降。用DTT处理后,qNs较对照明显下降,F0较对照明显上升,可以认为,柑橘在光合作用日变化中存在依赖于叶黄素循环和类囊体膜质子梯度两种非辐射能量耗散方式,而且它们在防御光破坏方面起着重要作用。  相似文献   

2.
缺磷强光下脐橙的过剩能量耗散机制   总被引:14,自引:4,他引:10  
采用营养液培养的方法,对缺磷强光下脐橙的过剩能量耗散机制进行了研究.结果表明,在强光下,用缺磷营养液处理脐橙后,光合色素含量、净光合速率Pn、光呼吸速率Pr、最大荧光Fm、光化学效率Fv/Fm和电子传递速率ETR下降,初始荧光Fo和光呼吸/光合比Pr/Pn升高.叶绿素荧光的非光化学猝灭的快相qNf下降,中间相qNm和慢相qNs升高.用DTT处理后Fo升高,qNmqNs下降,qNf无明显变化.缺磷强光胁迫加剧了脐橙光合作用的光抑制,进而启动了多种能量耗散机制.  相似文献   

3.
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This fast component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid pH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.Abbreviations PFD photon flux density - PS photosystem  相似文献   

4.
Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.  相似文献   

5.
The effect of anaerobiosis on the induction of the xanthophyll cycle was investigated in Chlamydomonas reinhardtii. The results showed that, anaerobiosis obtained by either sulfur starvation or by bubbling nitrogen in the culture grown in complete medium induced the xanthophyll cycle even when cultures were exposed to low light conditions. The zeaxanthin content reached 35 mmol mol?1 Chl a, after 110 h in anaerobic sulfur-starved cultures, and 30 mmol mol?1 Chl a within 24 h in sulfur replete cultures bubbled with nitrogen. Both starved and non-starved cultures grown under aerobic conditions, did not exhibit any sizeable increase in the zeaxanthin content. Chlorophyll fluorescence measurements revealed a decrease in the maximum photochemical quantum yield of PSII (Fv/Fm) by more than 50 %. The chlorophyll fluorescence kinetics (OJIP) analysis showed a strong rise at the J-step indicating a strong reduction of QA. Our findings demonstrated that anaerobiosis in low light exposed cultures induced the xanthophyll cycle through a strong increase of the level of plastoquinone pool reduction, which was associated to the formation of a trans-thylakoid membranes proton gradient, while in dark anaerobic cultures, no appreciable induction of xanthophyll cycle could be observed, despite the sizeable increase in non–photochemical quenching.  相似文献   

6.
Peter Jahns  Birgit Miehe 《Planta》1996,198(2):202-210
The generation of non-photochemical fluorescence quenching under photoinhibitory illumination and its relaxation under subsequent low light illumination in leaves from intermittent-light-grown pea (Pisum sativum L.) plants (IML-plants) has been investigated. In parallel, we studied (i) the activity of the xanthophyll cycle with emphasis on zeaxanthin formation and reconversion to violaxanthin and (ii) the degradation rate of D1 protein. In comparison to control plants grown in continuous light, IML-plants were much more susceptible to photoinhibition as determined from the increase of slowly (halftimes > 20 min) relaxing quenching (qI) of variable chlorophyll fluorescence. The relaxation (recovery) kinetics of qI (under weak light) in both types of plant depended on the photon flux density, temperature and duration of pre-illumination. The recovery time generally increased with an increasing degree of qI. In IML-plants, relaxation of qI was kinetically closely related to the epoxidation of zeaxanthin. At high degrees of photosystem II inhibition the kinetics resembled those of D1 degradation. The results are discussed in terms of the mechanisms of photosystem II inactivation in vivo.  相似文献   

7.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments.  相似文献   

8.
Six different xanthophyll cycles have been described in photosynthetic organisms. All of them protect the photosynthetic apparatus from photodamage caused by light-induced oxidative stress. Overexcitation conditions lead, in the chloroplast, to the over-reduction of the NADP pool and production of superoxide, which can subsequently be metabolized to hydrogen peroxide or a hydroxyl radical, other reactive oxygen species (ROS). On the other hand, overexcitation of photosystems leads to an increased lifetime of the chlorophyll excited state, increasing the probability of chlorophyll triplet formation which reacts with triplet oxygen forming single oxygen, another ROS. The products of the light-dependent phase of xanthophyll cycles play an important role in the protection against oxidative stress generated not only by an excess of light but also by other ROS-generating factors such as drought, chilling, heat, senescence, or salinity stress. Four, mainly hypothetical, mechanisms explaining the protective role of xanthophyll cycles in oxidative stress are presented. One of them is the direct quenching of overexcitation by products of the light phase of xanthophyll cycles and three others are based on the indirect participation of xanthophyll cycle carotenoids in the process of photoprotection. They include: (1) indirect quenching of overexcitation by aggregation-dependent light-harvesting complexes (LHCII) quenching; (2) light-driven mechanisms in LHCII; and (3) a model based on charge transfer quenching between Chl a and Zx. Moreover, results of the studies on the antioxidant properties of xanthophyll cycle pigments in model systems are also presented.  相似文献   

9.
When far red light preincubated cells of Euglena gracilis are transferred to dark or light, chlorophyll fluorescence (F0 and Fm) decreases. Non-photochemical quenching in the dark is suggested to be induced partly by chlororespiration and partly by changes in the distribution of excitation energy between the photosystems. Depending on the light intensities it was possible to resolve the non-photochemical quenching into at least three different components. The slowest relaxation phase of non-photochemical quenching occurred only after exposure to high light and was assigned to photoinhibition. The other two components were an energy-dependent quenching (qE), and the one which we attribute to a spill over mechanism. We suggest that both photosystems use a common antenna system consisting of LHC I and LHC II proteins. In contrast to higher plants, qE in Euglena gracilis is independent of the xanthophyll cycle and an aggregation of LHC II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In diatoms, the non-photochemical fluorescence quenching (NPQ) regulates photosynthesis during light fluctuations. NPQ is associated with an enzymatic xanthophyll cycle (XC) which is controlled by the light-driven transthylakoid proton gradient (delta pH). In this report, special illumination conditions and chemicals were used to perturb the kinetics of the delta pH build-up, of the XC and of NPQ. We found that the delta pH-related acidification of the lumen is also needed for NPQ to develop by switching the xanthophylls to an 'activated' state, probably via the protonation of light-harvesting antenna proteins. It confirms the NPQ model previously proposed for diatoms.  相似文献   

11.
Light is one of the most important factors affecting marine phytoplankton growth, and its variability in time and space strongly influences algal performance and success. The hypothesis tested in this work is that the activity of the xanthophyll cycle and the development of nonphotochemical quenching could be considered a functional trait of algal diversity. If this hypothesis is true, a relationship must exist between fast‐activated pigment variations linked to photoprotective behavior and the ecology of the species. This assumption was tested on three diatoms: Skeletonema marinoi Sarno et Zingone, Thalassiosira rotula Meunier, and Chaetoceros socialis Lauder. These three diatoms occupy different ecological niches. Strains of these diatoms were subjected to five changes in irradiance. Xanthophyll‐cycle activity, quantum yield of fluorescence, and electron transport rate were the main parameters determined. There were marked interspecific differences in xanthophyll‐cycle activity, and these differences were dependent on the light history of the cells. Chaetoceros socialis responded efficiently to changing irradiance, which might relate to its dominance during the spring bloom in some coastal areas. In contrast, T. rotula responded with a slower photoprotection activation, which seems to reflect its more offshore ecological distribution. The photoresponse of S. marinoi (a late‐winter coastal species blooming in the Adriatic Sea) was light‐history dependent, becoming photoinhibited under high light when acclimated to low light, but capable of reaching a high photoprotection level when acclimated to moderate light. Our hypothesis on the photoprotection capacity as a functional trait in microalgae seems to be validated given the results of this study.  相似文献   

12.
In polar seas, ice algal communities can acclimate to extremely low light conditions. Reduced acclimation to shade in ice algal communities, as a result of shortened ice seasons at the lower latitude limits of sea ice distribution, has been suggested as advantageous for avoiding strong photoinhibition when cells are released into high light levels at the water’s surface. Thermal dissipation of excess energy by xanthophyll cycle pigments in the de-epoxidated state may occur in ice algal communities released from retreating sea ice. A light exposure experiment was conducted on ice algal communities obtained from sea ice at Saroma-Ko Lagoon in Hokkaido, Japan. Photoprotective responses to direct sunlight were examined through non-photochemical quenching (NPQ) of chlorophyll fluorescence and xanthophyll pigments. De-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT) occurred rapidly, and NPQ showed a dynamic response to high light exposure. The linear relationship between the ratio of DT to chlorophyll a and NPQ followed a steeper slope than previously observed for mesophilic diatoms. The steeper slope could be explained by an apparent increase in DT for the mesophilic diatoms and induction of NPQ in response to low temperatures only in the ice algal communities. Enhanced production of DT in mesophilic diatoms could be the result of de-epoxidation of DD plus de novo synthesis, and the enhancement of NPQ might be caused by low temperature stress in the ice algae. Although the response of NPQ might be related to temperature, NPQ independent of DT synthesis should also be studied.  相似文献   

13.
The diatom algae, responsible for at least a quarter of the global photosynthetic carbon assimilation in the oceans, are capable of switching on rapid and efficient photoprotection, which helps them cope with the large fluctuations of light intensity in the moving waters. The enhanced dissipation of excess excitation energy becomes visible as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Intact cells of the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum, which show different NPQ induction kinetics under high light illumination, were investigated by picosecond time-resolved fluorescence under dark and NPQ-inducing high light conditions. The fluorescence kinetics revealed that there are two independent sites responsible for NPQ. The first quenching site is located in an FCP antenna system that is functionally detached from both photosystems, while the second quenching site is located in the PSII-attached antenna. Notwithstanding their different npq induction and reversal kinetics, both diatoms showed identical NPQ via both mechanisms in the steady-state. Their fluorescence decays in the dark-adapted states were different, however. A detailed quenching model is proposed for NPQ in diatoms.  相似文献   

14.
Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m?2 s?1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy.  相似文献   

15.
The xanthophyll cycle apparently aids the photoprotection of photosystem II by regulating the nonradiative dissipation of excess absorbed light energy as heat. However, it is a controversial question whether the resulting nonphotochemical quenching is soley dependent on xanthophyll cycle activity or not. The xanthophyll cycle consists of two enzymic reactions, namely deepoxidation of the diepoxide violaxanthin to the epoxide-free zeaxanthin and the much slower, reverse process of epoxidation. While deepoxidation requires a transthylakoid pH gradient (ΔpH), epoxidation can proceed irrespective of a ΔpH. Herein, we compared the extent and kinetics of deepoxidation and epoxidation to the changes in fluorescence in the presence of a light-induced thylakoid ΔpH. We show that epoxidation reverses fluorescence quenching without affecting thylakoid ΔpH. These results suggest that epoxidase activity reverses quenching by removing deepoxidized xanthophyll cycle pigments from quenching complexes and converting them to a nonquenching form. The transmembrane organization of the xanthophyll cycle influences the localization and the availability of deepoxidized xanthophylls is to support nonphotochemical quenching capacity. The results confirm the view that rapidly reversible nonphotochemical quenching is dependent on deepoxidized xanthophyll.  相似文献   

16.
The xanthophyll cycle and NPQ in diverse desert and aquatic green algae   总被引:1,自引:0,他引:1  
It has long been suspected that photoprotective mechanisms in green algae are similar to those in seed plants. However, exceptions have recently surfaced among aquatic and marine green algae in several taxonomic classes. Green algae are highly diverse genetically, falling into 13 named classes, and they are diverse ecologically, with many lineages including members from freshwater, marine, and terrestrial habitats. Genetically similar species living in dramatically different environments are potentially a rich source of information about variations in photoprotective function. Using aquatic and desert-derived species from three classes of green algae, we examined the induction of photoprotection under high light, exploring the relationship between nonphotochemical quenching and the xanthophyll cycle. In liquid culture, behavior of aquatic Entransia fimbriata (Klebsormidiophyceae) generally matched patterns observed in seed plants. Nonphotochemical quenching was lowest after overnight dark adaptation, increased with light intensity, and the extent of nonphotochemical quenching correlated with the extent of deepoxidation of xanthophyll cycle pigments. In contrast, overnight dark adaptation did not minimize nonphotochemical quenching in the other species studied: desert Klebsormidium sp. (Klebsormidiophyceae), desert and aquatic Cylindrocystis sp. (Zygnematophyceae), and desert Stichococcus sp. (Trebouxiophyceae). Instead, exposure to low light reduced nonphotochemical quenching below dark-adapted levels. De-epoxidation of xanthophyll cycle pigments paralleled light-induced changes in nonphotochemical quenching for species within Klebsormidiophyceae and Trebouxiophyceae, but not Zygnematophyceae. Inhibition of violaxanthin–zeaxanthin conversion by dithiothreitol reduced high-light-associated nonphotochemical quenching in all species (Zygnematophyceae the least), indicating that zeaxanthin can contribute to photoprotection as in seed plants but to different extents depending on taxon or lineage.  相似文献   

17.
In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m−2 s−1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective ‘safety valves’ in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.  相似文献   

18.
利用叶绿素荧光分析技术和高效液相色谱研究了链霉素(SM,叶绿体基因编码蛋白的抑制剂)处理玉米叶片的叶黄素循环及依赖叶黄素循环的热耗散。与对照相比,强光下SM处理叶片的最大光化学效率(Fv/Fm)降低且不能完全恢复,同时电子传递速率(ETR)显著下降。而且,SM处理叶片的非光化学淬灭(NPQ)和叶黄素循环的脱环氧化水平增加。但是,NPQ的主要组分高能态(qE)淬灭减小。因此,推测qE的降低可能与电子传递速率降低有关。  相似文献   

19.
Ritz  M.  Neverov  K.V.  Etienne  A.-L. 《Photosynthetica》1999,37(2):267-280
Plants have developed various photoprotective mechanisms to resist irradiation stress. One of the photoprotective mechanisms described in the literature for LHC2-containing organisms involves a down-regulation of photosystem (PS) 2 occurring simultaneously with the build-up of a proton gradient across the thylakoid membrane (ΔpH). It is often correlated with deepoxidation of xanthophylls located in LHC2. In Rhodophyta instead of LHC2, the peripheral antenna of PS2 consists of a large extramembrane complex, the phycobilisome (PBS), which transfers its excitation to the core antennae of PS2 composed of the CP43 and CP47 protein-chlorophyll complexes and there is no xanthophyll cycle. In the red alga Rhodella violacea a ΔpH-dependent chlorophyll (Chl) a fluorescence quenching can be formed. We characterised this quenching, studied the effects of various irradiances and inhibitors. Under photoinhibitory conditions, the ΔpH-dependent Chl fluorescence quenching exerts a photoprotective role and delays the kinetics of photoinhibition. It is the first time that such a photoprotective mechanism is described in PBS-containing organisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号