首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Seed dormancy is one of the most important traits in germination process to control malting and pre-harvest sprouting in barley (Hordeum vulgare L.). EST based linkage maps were constructed on seven recombinant inbred (RI) and one doubled haploid (DH) populations derived from crosses including eleven cultivated and one wild barley strains showing the wide range of seed dormancy levels. Seed dormancy of each RI and DH line was estimated from the germination percentage at 5 and 10 weeks post-harvest after-ripening periods in 2003 and 2005. Quantitative trait loci (QTLs) controlling seed dormancy were detected by the composite interval mapping procedure on the RI and DH populations. A total of 38 QTLs clustered around 11 regions were identified on the barley chromosomes except 2H among the eight populations. Several QTL regions detected in the present study were reported on similar positions in the previous QTL studies. The QTL on at the centromeric region of long arm of chromosome 5H was identified in all the RI and DH populations with the different degrees of dormancy depth and period. The responsible gene of the QTL might possess a large allelic variation among the cross combinations, or can be multiple genes located on the same region. The various loci and their different effects in dormancy found in the barley germplasm in the present study enable us to control the practical level of seed dormancy in barley breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Seed dormancy in barley (Hordeum vulgare L.) is one of the most important parameters affecting malting. Seed dormancy is quantitatively inherited and variously influenced by the environment. The objectives of the present study were to determine the genome location and effects of quantitative trait loci (QTLs) involved in the expression of seed dormancy in a barley cross between two varieties derived from different germplasm pools. Using a doubled-haploid population of 107 lines of the cross between the malting types Triumph (two-row, dormant) and Morex (six-row, non-dormant), seed dormancy phenotypic data sets from five environments and a 147-marker linkage map were developed in order to perform QTL analyses with simple interval mapping and simplified composite interval mapping procedures. Two different types of variables were considered for seed dormancy characterization: (1) level of dormancy induced during seed development, which was indirectly measured as germination percentage at 3 days and 7 days, GP3 and GP7 respectively; (2) rate of dormancy release in the course of a period after seed harvest (after-ripening). Different mechanisms of genetic control were detected for these two types of dormancy-related traits. A major and consistent dormancy QTL near the centromere on chromosome 7(5H) was associated with the establishment of dormancy during seed development and accounted for 52% and 33% of the variability for GP3 and GP7, respectively. Two other QTLs located in the vicinity of the vrs1 locus on chromosome 2(2H) and near the long arm telomere on chromosome 7(5H) explained 9% and 19% of variation, respectively, for the rate of dormancy release during after-ripening. Likewise, seed dormancy was assessed in an F2 population derived from the cross between two dormant types of distinct germplasm groups, Triumph (European, two-row, malt) and Steptoe (North American, six-row, feed), which showed similar but not identical genetic control for dormancy. Interestingly, there is remarkable dormancy QTL conservation in both regions on chromosome 7(5H) identified in this study and among other barley mapping populations. These widely conserved QTLs show potential as targets for selection of a moderate level of seed dormancy in breeding programs.Communicated by P. Langridge  相似文献   

3.
A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized lines that grow in a fixed environment, because their synthesis and accumulation are affected by many biotic and abiotic factors. Due to this complexity, isoflavone QTL mapping has often produced conflicting results especially with variable growing conditions. Herein, we comparatively mapped soybean seed isoflavones genistein, daidzein, and glycitein by using several of the most commonly used mapping approaches: interval mapping, composite interval mapping, multiple interval mapping and a mixed-model based composite interval mapping. In total, 26 QTLs, including many novel regions, were found bearing additive main effects in a population of RILs derived from the cross between Essex and PI 437654. Our comparative approach demonstrates that statistical mapping methodologies are crucial for QTL discovery in complex traits. Despite a previous understanding of the influence of additive QTL on isoflavone production, the role of epistasis is not well established. Results indicate that epistasis, although largely dependent on the environment, is a very important genetic component underlying seed isoflavone content, and suggest epistasis as a key factor causing the observed phenotypic variability of these traits in diverse environments.  相似文献   

4.
Three quantitative trait loci (QTLs) controlling seed dormancy were detected on group 4 chromosomes of wheat (Triticum aestivum L.) using 119 doubled haploid lines (DHLs) derived from a cross between AC Domain and Haruyutaka. A major QTL, designated QPhs.ocs-4A.1, was identified within the marker interval between Xcdo795 and Xpsr115 in the proximal region of the long arm of chromosome 4A. Two minor QTLs, QPhs.ocs-4B.2 on 4B and QPhs.ocs-4D.2 on 4D, were flanked by common markers, Xbcd1431.1 and Xbcd1431.2 in the terminal region of the long arms, suggesting a homoeologous relationship. These three QTLs explained more than 80% of the total phenotypic variance in seed dormancy of DHLs grown in the field and under glasshouse conditions. The AC Domain alleles at the three QTLs contributed to increasing seed dormancy. Comparative maps across wheat, barley and rice demonstrated the possibility of a homoeologous relationship between QPhs.ocs-4A.1 and the barley gene SD4, while no significant effects of the chromosome regions of wheat and barley orthologous to rice chromosome 3 region carrying a major seed dormancy QTL were detected. Received: 5 June 2000 / Accepted: 31 August 2000  相似文献   

5.
A comparative map of American wildrice ( Zizania palustris var. interior L.) was used to identify loci controlling seed shattering, plant height, maturity, tiller number, plant habit, panicle length seed length, and color traits. Two to six significant quantitative-trait-loci (QTLs, P < 0.05) were detected for each trait evaluated, representing the first trait-mapping in wildrice. The chosen population was designed to emphasize the mapping of loci controlling the shattering trait, which is the most important trait in the management of this newly domesticated species. Three loci were detected that controlled the discretely categorized variation between shattering and non-shattering plants. Seed-shattering loci were detected and validated among the F(2) and F(3) generations. A multiple regression model with these three loci described 49.6% of the additive genetic variation. A genetic model with the same three loci including dominance and locus interactions predicted the shattering versus non-shattering phenotype at a success rate of 87%. The comparative map was based on mapped RFLP markers used in white rice ( Oryza sativa L.) and other grass species. Anchor loci provided a reference point for the identification of potential orthologous genes on the basis of white rice mutant loci and consensus grass species QTLs. Candidate orthologous loci were identified among all traits evaluated. The study underscores the benefits of extending trait analysis through comparative mapping, as well as challenges of QTL analysis in a newly domesticated species.  相似文献   

6.
Quantitative trait loci (QTLs) controlling seed longevity in rice were identified using 98 backcross inbred lines (BILs) derived from a cross between a japonica variety Nipponbare and an indica variety Kasalath. Seeds of each BIL were kept for 12 months at 30 degrees C in dry conditions to promote loss of viability. To measure seed longevity, we performed an additional aging-processing treatment for 2 months at 30 degrees C maintaining seeds at 15% moisture content. We measured the germination percent of these treated seeds at 25 degrees C for 7 days as the degree of seed longevity. The germination of BILs ranged from 0 to 100% with continuous variation. Three putative QTLs for seed longevity, qLG-2, qLG-4 and qLG-9, were detected on chromosome 2, 4 and 9, respectively. Kasalath alleles increased the seed longevity at these QTLs. The QTL with the largest effect, qLG-9, explained 59.5% of total phenotypic variation in BILs. The other two QTLs, qLG-2 and qLG-4, explained 13.4 and 11.6% of the total phenotypic variation, respectively. We also verified the effect of the Kasalath allele of qLG-9 using chromosome segment substitution lines. Furthermore, QTLs for seed dormancy were identified on chromosomes 1, 3, 5, 7 and 11. Based on the comparison of the chromosomal location of QTLs for seed longevity and seed dormancy, these traits seem to be controlled by different genetic factors.  相似文献   

7.
Chromosome segment substitution lines (CSSLs) are powerful tools for detecting and precisely mapping quantitative trait loci (QTLs) and evaluating gene action as a single factor. In this study, 103 CSSLs were produced using two sequenced rice cultivars: 93-11, an elite restorer indica cultivar as recipient, and Nipponbare, a japonica cultivar, as donor. Each CSSL carried a single chromosome substituted segment. The total length of the substituted segments in the CSSLs was 2,590.6 cM, which was 1.7 times of the rice genome. To evaluate the potential application of these CSSLs for QTL detection, phenotypic variations of seed shattering, grain length and grain width in 10 CSSLs were observed. Two QTLs for seed shattering and three for grain length and grain width were identified and mapped on rice chromosomes. The results demonstrate that CSSLs are excellent genetic materials for dissecting complex traits into a set of monogenic loci. These CSSLs are of great potential value for QTL mapping and plant marker-assisted breeding (MAB).  相似文献   

8.
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O. nivara IRGC81848 (population 1) was evaluated during 2005 and that from Swarna × O. nivara IRGC81832 (population 2) was evaluated during 2006. Linkage maps were constructed using 100 simple sequence repeat (SSR) markers in population 1 and 75 SSR markers in population 2. In all, 21 QTLs were identified in population 1 (43% from O. nivara) and 37 in population 2 (38% QTLs from O. nivara). The location of O. nivara-derived QTLs mp1.2 for milling percent, kw6.1 for kernel width, and klac12.1 for kernel length after cooking coincided in the 2 populations and appear to be useful for Marker Assisted Selection (MAS). Four QTLs for milling percent, 1 QTL each for amylose content, water uptake, elongation ratio, 2 QTLs for kernel width, and 3 QTLs for gel consistency, each explained more than 20% phenotypic variance. Three QTL clusters for grain quality traits were close to the genes/QTLs for shattering and seed dormancy. QTLs for 4 quality traits were associated with 5 of the 7 major yield QTLs reported in the same 2 mapping populations. Useful introgression lines have been developed for several agronomic traits. It emerges that 40% O. nivara alleles were trait enhancing in both populations, and QTLs for grain quality overlapped with yield meta-QTLs and QTLs for dormancy and seed shattering.  相似文献   

9.
Chromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession ‘PSRR-1’ with genome-wide coverage in an adapted rice cultivar ‘Bengal’ background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL) populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight) identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes.  相似文献   

10.
Seed dormancy in rice interrelates to the weedy characteristics shattering, awn, black hull color, and red pericarp color. A cross between the weedy strain SS18-2 and the breeding line EM93-1 was developed to investigate the genetic basis and adaptive significance of these interrelationships. These characteristics or their components differed in average degree of dominance from –0.8 to 1.5, in heritability from 0.5 to 0.96, and in their contribution to phenotypic or genotypic variation in dormancy by up to 25%. Five dormancy, four shattering, and three awn-length quantitative trait loci (QTLs) were detected in the BC1 population replicated in 2 years. Two QTLs for hull color were identified, and the SS18-2-derived and EM93-1-derived alleles increased the intensity of black, and red or yellow pigmentations, respectively. The only QTL for pericarp color co-located with the red pericarp gene Rc, with the SS18-2-derived allele increasing the intensity of black and red pigmentations. Four of the five dormancy QTLs were flanked or bracketed by one to four QTLs for the interrelated characteristics. The QTL organization pattern indicates the central role of seed dormancy in adaptive syndromes for non-domesticated plants, implies that the elimination of dormancy from cultivars could arise from the selections against multiple interrelated characteristics, and challenges the use of dormancy genes at these loci in breeding varieties for resistance to pre-harvest sprouting (PHS). However, another QTL (qSD12) provides candidate gene(s) for PHS resistance because it has a large effect in the population and it is independent of the loci for interrelated characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号