首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary The present study describes a new perfusion technique—based on the use of a routine spectrofluorometer—which enables fluorometric evaluation of polarity, regulation and kinetics of Na+/H+ exchange at the level of an intact monolayer. Na+/ H+ exchange was evaluated in bicarbonate-free solutions in OK (opossum kidney) cells, a renal epithelial cell line. Na+/H+ exchange activity was measured by monitoring changes in intracellular pH (pH i ) after an acid load, using the pH-sensitive dye 27-bis (carboxyethyl) 5–6-carboxy-fluorescein (BCECF). Initial experiments indicated that OK cells grown on a permeable support had access to apical and basolateral perfusion media. They also demonstrate that OK cells express an apical pH i , recovery mechanism, which is Na+ dependent, ethylisopropylamiloride (EIPA) sensitive and regulated by PTH. Compared to resting conditions (pH i =7.68; pH o =7.4) where Na+/H+ exchange is not detectable, transport rate increased as pH i decreased. A positive cooperativity characterized the interaction of internal H+ with the exchanger, and suggests multiple H+ binding sites. In contrast, extracellular [Na+] increased transport with simple Michaelis-Menten kinetics. The apparent affinity of the exchanger for Na+ was 19mM at an intracellular pH of 7.1 and 60mM at an intracellular pH of 6.6. Inhibition of Na+/H+ exchange activity by EIPA was competitive with respect to extracellular [Na+] and theK i was 3.4 M. In conclusion, the technique used in the present study is well suited for determination of mechanisms involved in control of epithelial cell pH i and processes associated with their polarized expression and regulation.  相似文献   

2.
Summary Suspensions of OK cells (a continuous renal epithelial cell line originating from the opossum kidney) were examined by flow cytometry. Three parameters were evaluated simultaneously; cell integrity as assayed by propidium iodide fluorescence, cell size as measured by time-of-flight, and intracellular pH as measured by fluorescence of 2,7-bis-(2-carboxyethyl)-5,6 carboxyfluorescein (BCECF). The suspension was shown to be composed of both intact singlets and doublets of cells, and no difference was noted in the behavior of these two populations with respect to the resting intracellular pH, or of the response of intracellular BCECF to changes in pH. Evidence suggests that using NH4 prepulses to create an acid load broadens the intracellular pH distribution. The population of OK cells demonstrates a recovery from this acid load which is very homogeneous with respect to its sensitivity to Na+ removal or EIPA (ethylisopropyl-amiloride), suggesting that virtually all cells utilize Na+/H+ exchange for this recovery. The data also suggest heterogeneity in the cellular pH recovery from an acid load with respect to the observed rates of Na+/H+ exchange. Despite this heterogeneity, the Na+/H+ exchanger is observed to focus the resting intracellular pH of the population to approximately pH 7.4–7.5. The response of the population to PTH suggests that the majority of cells respond to the hormone, and that the total Na+/H+ exchange in individual cells is only partially inhibited even in the presence of saturating PTH concentrations.  相似文献   

3.
Summary This paper describes measurements of electrical potentials generated by renal Na/K-ATPase reconstituted into proteoliposomes, utilizing the anionic dye, oxonol VI. Calibration of absorption changes with imposed diffusion potentials allows estimation of absolute values of electrogenic potentials.ATP-dependent Nacyt/Kexc exchange in K-loaded vesicles generates large potentials, up to 250 mV. By comparing initial rates or steady-state potentials with ATP-dependent22Na fluxes in different conditions, it is possible to infer whether coupling ratios are constant or variable. For concentrations of Nacyt (2–50mm) and ATP (1–1000 m) and pH's (6.5–8.5), the classical 3Nacyt/2Kexc coupling ratio is maintained. However, at low Nacyt concentrations (<0.8mm), the coupling ratio is apparently less than 3Nacyt/2Kexc.ATP-dependent Nacyt/congenerexc exchange in vesicles loaded with Rb, Cs, Li and Na is electrogenic. In this mode congeners, including Naexc, act as Kexc surrogates in an electrogenic 3Nacyt/2congenerexc exchange. (ATP+Pi)-dependent Kcyt/Kexc exchange in K-loaded vesicles is electroneutral.ATP-dependent uncoupled Na flux into Na- and K-free vesicles is electroneutral at pH 6.5–7.0 but becomes progressively electrogenic as the pH is raised to 8.5. The22Na flux shows no anion specificity. We propose that uncoupled Na flux is an electroneutral 3Nacyt/3Hexc exchange at pH 6.5–7.0 but at higher pH's the coupling ratio changes progressively, reaching 3Na/no ions at pH 8.5. Slow passive pump-mediated net K uptake into Na- and K-free vesicles is electroneutral, and may also involve Kcyt/Hexc exchange.We propose the general hypothesis that coupling ratios are fixed when cation transport sites are saturated, but at low concentrations of transported cations, e.g., Nacyt in Na/K exchange and Hexc in uncoupled Na flux, coupling ratios may change.  相似文献   

4.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

5.
A number of data are consistent with the hypothesis that increases in intracellular Na+ concentration (Na+ i) during ischemia and early reperfusion lead to calcium overload and exacerbation of myocardial injury. However, the mechanisms underlying the increased Na+ i remain unclear. 23Na nuclear magnetic resonance spectroscopy was used to monitor Na+ i in isolated rat hearts perfused with a high concentration of fatty acid as can occur under some pathological conditions. Whole-cell patch-clamp experiments were also performed on isolated cardiomyocytes in order to investigate the role of voltage-gated sodium channels. Na+ i increased to substantially above control levels during no-flow ischemia. The results show that a pharmacological reduction of Na+ i increase by cariporide (1 mol/L, a Na+/H+ exchange blocker) is not the only protection against ischemia-reperfusion damage, but that such protection may also be brought about by metabolic action aimed at reducing fatty acid utilization by myocardial cells. This action was obtained in the presence of etomoxir (0.1 mol/L), an inhibitor of carnitine palmitoyltransferase-1 (the key enzyme involved in fatty acid uptake by the mitochondria) which also decreases long-chain acyl carnitine accumulation. The possibility of Na+ channels participating in Na+ i increase as a consequence of alterations in cardiac metabolism was studied in isolated cells. Sustained INa was stimulated by the presence of lysophosphatidylcholine (LPC, 10 mol/L) whose accumulation during ischemia is, at least partly, dependent on increased long-chain acyl carnitine. Current activation was particularly significant in the range of potentials between –60 and –20 mV. This may have particular relevance in ischemia. The quantity of charge carried by sustained INa was reduced by 24% in the presence of 1 mol/L cariporide. Therefore, limitation of long-chain fatty acid metabolism, and consequent limitation of ischemia-induced long-chain acyl carnitine accumulation, may contribute to reducing intracellular Na+ increase during ischemia-reperfusion.  相似文献   

6.
Summary LLC-PK1 cells (a continuous epithelioid cell line with renal characteristics) are examined by microspectrofluorometry as single cells, in order to determine the mechanism of intracellular pH (pH i ) recovery from an acid load imposed by ammonium preincubation and removal (NH4 prepulse). Initial experiments evaluate the intracellular K+ levels through a null point analysis of total cellular K+ with flame photometry. The response of BCECF (a pH-sensitive fluorescent dye) is then calibrated, using saturating concentrations of nigericin to cause defined changes in pH i . For experiments with the microspectrofluorometer, LLC-PK1 cells were grown on either glass coverslips or filters (the latter attached to plastic coverslips with a hole under the filter). The cells on glass coverslips demonstrate a Na+-dependent recovery from an (NH4 prepulse) acid load which is sensitive to 1 M ethylisopropylamiloride. They also demonstrate a set point of activation of Na+/H+ exchange. When examined for changes in pH i due to changes in membrane potential, plasma membrane proton conductance could not be detected at resting pH i . Cells grown on filters also demonstrate a pH i recovery from an acid load which is Na+ dependent and ethylisopropylamiloride sensitive, but in this configuration, the majority of cells (22/23 preparations) require Na+ at the basolateral membrane for rapid pH i recovery. The morphology and polarity of the cells grown on permeable supports appears normal at the electron-microscopic level. The results are not affected by changes in cell seeding density or collagen treatment of the filters.  相似文献   

7.
G. O. Kirst  M. A. Bisson 《Planta》1982,155(4):287-295
Ionic responses to alteration in external and internal pH were examined in an organism from a marine-like environment. Vacuolar pH (pHv) is about 4.9–5.1, constant at external pH (pHo) 5–8, while cytoplasmic pH (pHc) increases from 7.3 to 7.7. pHc regulation fails above pHo 9, and this is accompanied by failure of turgor regulation. Na+ increases above pHo 9, while K+ and Cl decrease. These changes alone cannot however explain the alterations in turgor. Agents known to affect internal pH are also tested for their effect on ion relations.Abbreviations Ci ion concentration - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - DES diethylstilbestrol - DMO 5,5-dimethyloxazolidine-2,4-dione - DNP 2,4-dinitrophenol - pHo external pH - pHc cytoplasmic pH - pHv vacuolar pH - i osmotic pressure - turgor pressure  相似文献   

8.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

9.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 10.
    Simultaneous net uptake of Na+ and net extrusion of H+, both inhibited by amiloride, could be stimulated in red blood cells of the frog, Rana temporaria, either by intracellular acidification or cellular shrinkage. Net transports of Na+ and H+ were transient, dying out after 10–20 min (20°C) when stimulated by intracellular acidification but developing more slowly and proceeding for more than 60 min (20°C) when stimulated by cellular shrinkage. Evidence is presented suggesting a coupling between the transports of Na+ and H+ with an exchange ratio of 1:1 Na+/H+ exchange, stimulated by intracellular acidification, was able to readjust intracellular pH also when operating in parallel to a fully working anion exchanger in CO2/HCO 3 - -buffered media. Inhibition of anion exchange resulted in reduced cellular net uptake of Na+.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonate - DMSO dimethylsulphoxide - IU international unit - pH e extracellular pH - pH i intracellular pH - RBC red blood cell  相似文献   

    11.
    Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

    12.
    Recent studies in heart cells have shown taurine to induce a sustained increase of both intracellular Ca2+ and Na+. These results led us to believe that the increase in Na+ by taurine could be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through Na+-Ca2+ exchange. Therefore, we investigated the effect of -alanine, a blocker of the taurine-Na+ cotransporter and low concentrations of CBDMB (a pyrazine derivative, 5-(N-4chlorobenzyl)-2,4-dimethylbenzamil), a Na+-Ca2+ exchanger blocker on taurine-induced [Ca]i increase in embryonic chick heart cells. Using Fura-2 Ca2+ imaging and Fluo-3 Ca2+ confocal microscopy techniques, taurine (20 mM) as expected, induced a sustained increase in [Ca]i at both the cytosolic and the nuclear levels. Preexposure to 500 M of the blocker of the taurine-Na+ cotransporter, -alanine, prevented the amino acid-induced increase of total [Ca]i. On the other hand, application of -alanine did not reverse the action of taurine on total [Ca]i. However, low concentrations of the Na+-Ca2+ exchanger blocker, CBDMB, reversed the taurine-induced sustained increase of cytosolic and nuclear free calcium (in presence or absence of -alanine). Thus, the effect of taurine on [Ca]i in heart cells appears to be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through the Na+-Ca2+ exchanger.  相似文献   

    13.
    A ouabain sensitive inward current occurs in Xenopus oocytes in Na+ and K+ -free solutions. Several laboratories have investigated the properties of this current and suggested that acidic extracellular pH (pHo) produces a conducting pathway through the Na+/K+ pump that is permeable to H+ and blocked by [Na+]o. An alternative suggestion is that the current is mediated by an electrogenic H+-ATPase. Here we investigate the effect of pHo and [Na+]o on both transient and steady-state ouabain-sensitive current. At alkaline or neutral pHo the relaxation rate of pre-steady-state current is an exponential function of voltage. Its U-shaped voltage dependence becomes apparent at acidic pHo, as predicted by a model in which protonation of the Na+/K+ pump reduces the energy barrier between the internal solution and the Na+ occluded state. The model also predicts that acidic pHo increases steady-state current leak through the pump. The apparent pK of the titratable group(s) is 6, suggesting that histidine is involved in induction of the conductance pathway. 22Na efflux experiments in squid giant axon and current measurements in oocytes at acidic pHo suggest that both Na+ and H+ are permeant. The acid-induced inward current is reduced by high [Na+]o, consistent with block by Na+. A least squares analysis predicts that H+ is four orders of magnitude more permeant than Na+, and that block occurs when 3 Na+ ions occupy a low affinity binding site (K 0.5=130±30 mM) with a dielectric coefficient of 0.23±0.03. These data support the conclusion that the ouabain-sensitive conducting pathway is a result of passive leak of both Na+ and H+ through the Na+/K+ pump.  相似文献   

    14.
    Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

    15.
    Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

    16.
    Na+/H+ antiporters are universal devices involved in the Na+ and H+ circulation of both eukaroyotes and prokaryotes, thus playing an essential role in the pH and Na+ homeostasis of cells. This review focuses on the major impact of the application of molecular biology tools in the study of the antiporters. These tools permit the verification of the role of the antiporters and provide insights into their unique biology. A novel signal transduction to Na+ involvingnhaR, a positive regulator, controls the expression ofnhaA inE. coli. A pH sensor regulates the activity of Na+/H+ antiporters, both in eukaryotes and prokaryotes. A most intricate signal transduction to pH involving phosphorylation steps controls the activity ofnhel in higher mammals. The identification of Histidine 226 in the pH sensor of NhaA is a step forward towards the understanding of the pH regulation of these proteins.  相似文献   

    17.
    Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

    18.
    ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

    19.
    Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

    20.
    Internal pH (pHi) was determined inEmiliania huxleyi (Lohmann) using the probe 2,7-bis-(2-carboxyethyl)-5(and-6)carboxyfluoresceinacetoxymethylester (BCEF-AM) and digital imaging microscopy. The probe BCECF-AM was taken up and hydrolysed to the free acid by the cells. A linear relationship was established between pHi and the 490/450 fluorescence ratio of BCECF-AM over the pH range 6.0 to 8.0 using the ionophore nigericin. Two distinct pH domains were identified within the cell, the cytoplasmic domain (approx. pH 7.0) and the chloroplast domain (approx. pH 8.0). The average pHi was 7.29 (±0.11) for cells in the presence of 2 mM HCO 3 . In the absence of HCO 3 the pHi was decreased by 0.8 pH unit. The importance of these changes in pHi is considered in relation to inorganic-carbon uptake.Abbreviations AM acetoxymethylester - BCECF 2,7-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - pHi intracellular pH  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号