首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

2.
MHC class I molecules are heterotrimeric complexes composed of heavy chain, 2-microglobulin (2m) and short peptide. This trimeric complex is generated in the endoplasmic reticulum (ER), where a peptide loading complex (PLC) facilitates transport from the cytosol and binding of the peptide to the preassembled ER resident heavy chain/2m dimers. Association of mouse MHC class I heavy chain with 2m is characterized by allelic differences in the number and/or positions of amino acid interactions. It is unclear, however, whether all alleles follow common binding patterns with minimal contributions by allele-specific contacts, or whether essential contacts with 2m are different for each allele. While searching for the PLC binding site in the 3 domain of the mouse MHC class I molecule H-2Db, we unexpectedly discovered a site critical for binding mouse, but not human, 2m. Interestingly, amino acids in the corresponding region of another MHC class I heavy chain allele do not make contacts with the mouse 2m. Thus, there are allelic differences in the modes of binding of 2m to the heavy chain of MHC class I.  相似文献   

3.
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2.  相似文献   

4.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

5.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As).
Graphical abstract Computed density difference plots for the complexes 3?NH 3 (a 1), 3?PH 3 (b 1), 3?AsH 3 (c 1) and electron density shifts for the complexes 3?NH 3 (a 2), 3?PH 3 (b 2),3?AsH 3 (c 2) on the 0.001 a.u. contour
  相似文献   

6.
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked substrates. Stimulation likely depends on Nitric Oxide ( . NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP or high GSNO (10 mM plus DTE to increases its . NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a . NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of . NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection.  相似文献   

7.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

8.
The dissolved CO 2 concentration of stream waters is an important component of the terrestrial carbon cycle and an important pathway for release of CO2 to the atmosphere. This study uses data from the UK's largest groundwater monitoring network to estimate the importance of groundwater in contributing excess dissolved CO2 to the atmosphere. The study shows that:
(i)  the arithmetic mean concentration of excess dissolved CO2 in the groundwater was 4.99 mg C/I with a standard deviation of 2.53
(ii)  for the groundwater composition of excess dissolved CO2 analysis shows no statistical difference between years but does show a significant intra-annual effect and a significant difference between aquifers
(iii)  A weighted average of the estimate the areal export of excess dissolved CO2 from the groundwater of the catchment is between 1.4 and 2.9 t C/km2
(iv)  the flux of excess dissolved CO2 at the catchment outlet over the period between 1975 and 2002 averages 1.79 kt  C/year.
If this were replicated across the UK then the flux of CO2 from rivers would be 0.65 Mt C/year.  相似文献   

9.
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate, with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase mitochondrial ROS production. Cyanide (CN) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2 production.  相似文献   

10.
The effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of the cytoplasmic enzymes lactate dehydrogenase (LDH) and glutathione peroxidase (GLP), and membrane-bound phosphofructokinase (PFK) and Na+,K+-ATPase in human erythrocytes has been studied. When used in combination, the cytotoxins decrease the activity of LDH and PFK in a nonadditive manner; in this case, Aβ25–35 protects PFK against the inhibitory effect of C60. The activity of LDH, GLP, and PFK decreases within the first 2–20 min of incubation of erythrocytes with Aβ25–35 in the absence of glucose. The addition of glucose sharply decreases the inhibitory action of Aβ25–35 on LDH and GLP but does not affect the fourfold decrease in activity of PFK; the activity of membrane-bound Na+,K+-ATPase does not depend on the presence of glucose. Possible mechanisms of interaction of Aβ25–35 and fullerene C60 with the erythrocyte membrane and enzymes are discussed.  相似文献   

11.
A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) β1γ2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni) were used to express the recombinant protein Gβ1γ2. The cell membrane containing Gβ1γ2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gβ1γ2 could significantly stimulate AC2 activity. The interaction of β1γ2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gβ1γ2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gβ1γ2 was the same as AC2 activity domain which was stimulated by β1γ2.  相似文献   

12.
We performed longitudinal examinations by neurofeedback in 17 subjects. The subjects were trained for 12 training seßsions (three weeks) to voluntarily increase the intensity of the ß2 frequencies in the frontal EEG electrodes of the right (the D scenario) and the left (the S scenario) hemispheres. All the subjects were divided into three groups depending on the training efficacy: a group of subjects that successfully controlled the ß activity in the frontal electrodes of both hemispheres (nine subjects), a group of subjects that successfully controlled this activity only in the right hemisphere (four subjects), and a group of subjects that failed to train during the specified period (four subjects). Analysis of the obtained data showed that the training efficacy depended on the cognitive activity that was focused on achieving the corresponding EEG effects and on the individual personality characteristics.  相似文献   

13.
Alpha-synuclein (α-synuclein) aggregation and impairment of the Ubiquitin proteasome system (UPS) are implicated in Parkinson’s disease (PD) pathogenesis. While zinc (Zn) induces dopaminergic neurodegeneration resulting in PD phenotype, its effect on protein aggregation and UPS has not yet been deciphered. The current study investigated the role of α-synuclein aggregation and UPS in Zn-induced Parkinsonism. Additionally, levodopa (l-Dopa) response was assessed in Zn-induced Parkinsonian model to establish its closeness with idiopathic PD. Male Wistar rats were treated with zinc sulfate (Zn; 20 mg/kg; i.p.) twice weekly for 12 weeks along with respective controls. In few subsets, animals were subsequently treated with l-Dopa for 21 consecutive days following Zn exposure. A significant increase in total and free Zn content was observed in the substantia nigra of the brain of exposed groups. Zn treatment caused neurobehavioral anomalies, striatal dopamine decline, and dopaminergic neuronal cell loss accompanied with a marked increase in α-synuclein expression/aggregation and Ubiquitin-conjugated protein levels in the exposed groups. Zn exposure substantially reduced UPS-associated trypsin-like, chymotrypsin-like, and caspase-like activities along with the expression of SUG1 and β-5 subunits of UPS in the nigrostriatal tissues of exposed groups. l-Dopa treatment rescued from Zn-induced neurobehavioral deficits and restored dopamine levels towards normalcy; however, Zn-induced dopaminergic neuronal loss, reduction in tyrosine hydroxylase expression, and increase in oxidative stress were unaffected. The results suggest that Zn caused UPS impairment, resulting in α-synuclein aggregation subsequently leading to dopaminergic neurodegeneration, and that Zn-induced Parkinsonism exhibited positive l-Dopa response similar to sporadic PD.  相似文献   

14.
Catecholamines are among first compounds released during stress, and they regulate many functions of the organism, including immune system, via adrenergic receptors (ARs). Spleen, as an immune organ with high number of macrophages, possesses various ARs, from which β2-ARs are considered to be the most important for the modulation of immune functions. Nevertheless, little is known about the regulation and involvement of ARs in the splenic function by stress. Therefore, the aim of this work was to measure the gene expression of ARs and several cytokines in the spleen of rats exposed to a single and repeated (14×) immobilization stress (IMO). We have found a significant increase in β2-AR mRNA after a single IMO, but a significant decrease in β2-AR mRNA and protein level after repeated (14×) IMO. The most prominent decrease was detected in the gene expression of the α2A- and α2C-AR after repeated IMO. However, changes in mRNA were translated into protein levels only for the α2C-subtype. Other types of ARs remained unchanged during the stress situation. Since we proposed that these ARs might affect production of cytokines, we measured gene expression of pro-inflammatory (TNF-α, IL-1β, IL-6 and IL-18) and anti-inflammatory (IL-10 and TGF-β1) cytokines. We detected changes only in IL-6 and IL-10 mRNA levels. While IL-6 mRNA was increased, IL-10 mRNA dropped after repeated IMO. According to these results we suggest that changes of β2- and α2C-ARs participate in IL-6-mediated processes in the spleen, especially during chronic stress situations.  相似文献   

15.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

16.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

17.
Large-scale expression of β2-adrenergic receptor (β2-AR) in functional form is necessary for establishment of receptor assays for detecting illegally abused β-adrenergic agonists (β-agonists). Cell-based heterologous expression systems have many critical difficulties in synthesizing this membrane protein, such as low protein yields and aberrant folding. To overcome these challenges, the main objective of the present work was to synthesize large amounts of functional β2-AR in a cell-free system based on Escherichia coli extracts. A codon-optimized porcine β2-AR gene (codon adaptation index: 0.96) suitable for high expression in E. coli was synthesized and transcribed to the cell-free system, which contributed to increase the expression up to 1.1 mg/ml. After purification using Ni-affinity chromatography, the bioactivity of the purified receptor was measured by novel enzyme-linked receptor assays. It was determined that the relative affinities of the purified β2-AR for β-agonists in descending order were as follows: clenbuterol > salbutamol > ractopamine. Moreover, their IC50 values were 45.99, 60.38, and 78.02 μg/liter, respectively. Although activity of the cell-free system was slightly lower than activity of systems based on insect and mammalian cells, this system should allow production of β2-AR in bulk amounts sufficient for the development of multianalyte screening methods for detecting β-agonist residues.  相似文献   

18.
19.
STUDIES of adult1 and foetal2 haemoglobin from the chimpanzee (Pan troglodytes) have shown that the amino-acid compositions of tryptic and chymotryptic peptides of the α, β and γ-chains are indistinguishable from those of man. The primary structures of chimpanzee α, β and γ-chains are therefore almost certainly identical to the homologous human chains. The two types of γ-chains found in man3, Gγ and Aγ, with glycine and alanine in position γ136, respectively, are likewise present in the chimpanzee2.  相似文献   

20.
PROSTAGLANDIN (PG) Fhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号