首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We have studied the biochemical and biological properties of 5-bromotubercidin (4-amino-5-bromo-7-beta-d-ribofuranosyl-pyrrolo [2,3-d]pyrimidine) (BrTu), a synthetic analogue of the highly cytotoxic pyrrolo[2,3-d]pyrimidine ribonucleoside antibiotic tubercidin (Tu) that interferes with numerous cellular processes, and has been shown to possess biological specificity and selectivity. Thus, BrTu entered the mammalian cell nucleotide pool by phosphorylation, was incorporated into RNA in an unmodified form and, as a consequence, reversibly inhibited (15 microM) mammalian cell growth and the synthesis of high-molecular-weight cellular RNA species (i.e., mRNA and rRNA). However, BrTu (300 microM) did not inhibit picornavirus RNA synthesis or multiplication, and thus discriminated between virus RNA-dependent and all forms of DNA-dependent RNA synthesis whether of cellular or viral origin; because of this BrTu should prove valuable as a metabolic probe for studying the cell-virus relationship. Furthermore, BrTu is a substrate for adenosine kinase (K(m)=24 microM), and is also its potent inhibitor (K(i)=0.93 microM); thus, low concentrations of BrTu (1.5 microM), which did not inhibit cell growth, blocked phosphorylation and the cellular uptake of other, highly cytotoxic pyrrolo-pyrimidine nucleoside analogues (e.g., tubercidin). This block in cellular uptake and incorporation of toxic analogues was associated with the protective effect of BrTu against cell killing by the analogues, providing a mechanism by which BrTu and these analogues can, as we reported elsewhere [J. Virol.1999, 73, 6444], be used for the selective inactivation of replicating picornaviruses.  相似文献   

2.
The mechanism whereby picornaviruses inhibit host protein synthesis while their own synthetic processes proceed unabated has remained elusive. One of our approaches to this problem was to study the ability of cell-free extracts derived from uninfected and mengovirus-infected Ehrlich ascites tumor cells to translate viral and nonviral mRNA's under various conditions of incubation. Our results indicate that viral messengers (from mengovirus and encephalomyocarditis virus) and cellular messengers [L cell and Ehrlich ascites tumor poly(A)-containing mRNA's, rabbit globin mRNA, and chicken embryo lens crystallin mRNA] are translated equally well in both extracts. We also examined the simultaneous translation of viral and nonviral mRNA's in extracts from uninfected Ehrlich ascites tumor cells. Our results indicate that under certain conditions mengovirus RNA can suppress completely the translation of globin mRNA. The significance of these results in terms of the shutoff of host protein synthesis is discussed.  相似文献   

3.
The incorporation of uridine into the nucleotide pool of actinomycin-treated, mengovirus-infected Novikoff rat hepatoma cells in culture follows simple Michaelis-Menten kinetics, and the apparent V(max) and K(m) values are similar to those for uridine transport by uninfected cells. Incorporation of uridine into mengovirus-specific ribonucleic acid (RNA) also follows Michaelis-Menten kinetics, and the apparent K(m) (about 10 mum) is approximately the same as for uridine transport. Inhibition of uridine transport by the presence of adenosine, persantin, or phenethyl alcohol inhibits simultaneously and to the same extent the incorporation of uridine into the nucleotide pool and into viral RNA, without affecting viral RNA synthesis per se. Phenethyl alcohol, however, also inhibits virus maturation. The inhibition of uridine incorporation into the nucleotide pool and into viral RNA is of the simple competitive type, indicating that transport into the cells is the rate-limiting step in the incorporation of uridine into mengovirus RNA. The results also indicate that treatment with actinomycin D or mengovirus infection does not affect uridine transport.  相似文献   

4.
DNA synthesis in Epstein-Barr virus (EBV)-infected lymphocytes was inhibited by phosphonoacetic acid (PAA) as measured by [3H]thymidine incorporation. PAA, at a concentration of 200 microgram/ml, inhibited [3H]thymidine incorporation by human umbilical cord lymphocytes infected with EBV strain P94 but had little effect on DNA synthesis in mitogen-stimulated cells. Transformed cell lines did not develop from infected cord cell cultures treated with 100 microgram of PAA per ml. Cytofluorometric analysis showed marked increases in cellular nucleic acid content (RNA plus DNA) as early as 9 days after infection of cord cells in the absence of PAA and before significant enhancement of [3H]thymidine incorporation became apparent. Moreover, EBV led to increases in cellular nucleic acid even when 200 microgram of PAA per ml was added to cell cultures before infection. The apparent discrepancy between results obtained by [3H]thymidine incorporation and cytofluorometry is explained either by significant inhibition of cellular DNA polymerases by PAA or by a block at the G2 + M phase of the cell cycle. The data suggest that EBV initiates alterations in cellular nucleic acid synthesis or cell division without prior replication of viral DNA by virus-induced DNA polymerases.  相似文献   

5.
Previous work by several laboratories has established that translation of picornavirus RNA requires active eIF2α for translation in cell free systems or after transfection in culture cells. Strikingly, we have found that encephalomyocarditis virus protein synthesis at late infection times is resistant to inhibitors that induce the phosphorylation of eIF2α whereas translation of encephalomyocarditis virus early during infection is blocked upon inactivation of eIF2α by phosphorylation induced by arsenite. The presence of this compound during the first hour of infection leads to a delay in the appearance of late protein synthesis in encephalomyocarditis virus-infected cells. Depletion of eIF2α also provokes a delay in the kinetics of encephalomyocarditis virus protein synthesis, whereas at late times the levels of viral translation are similar in control or eIF2α-depleted HeLa cells. Immunofluorescence analysis reveals that eIF2α, contrary to eIF4GI, does not colocalize with ribosomes or with encephalomyocarditis virus 3D polymerase. Taken together, these findings support the novel idea that eIF2 is not involved in the translation of encephalomyocarditis virus RNA during late infection. Moreover, other picornaviruses such as foot-and-mouth disease virus, mengovirus and poliovirus do not require active eIF2α when maximal viral translation is taking place. Therefore, translation of picornavirus RNA may exhibit a dual mechanism as regards the participation of eIF2. This factor would be necessary to translate the input genomic RNA, but after viral RNA replication, the mechanism of viral RNA translation switches to one independent of eIF2.  相似文献   

6.
Host-Dependent Restriction of Mengovirus Replication   总被引:5,自引:2,他引:3       下载免费PDF全文
Mengovirus infection of a restrictive cell line, Maden's bovine kidney (MDBK), results in a virus yield 1,000-fold less than that obtained from productively infected cell lines such as L cells or Ehrlich ascites tumor cells (EAT). Cells of both types of host systems are infected with comparable efficiencies and are completely killed as a consequence of infection. Infective center assays, coupled with the observation of total cell killing, suggest that comparable numbers of cells synthesize viral antigen and release virus in both types of host system. Viral-specific ribonucleic acid (RNA) synthesis is initiated and proceeds in an identical fashion for approximately 4 hr after the infection of MDBK, EAT, or L-cells. At this time, viral RNA synthesis in MDBK ceases, whereas viral RNA synthesis in EAT and L-cells continues at a linear rate. These results indicate that none of the early viral events leading to the initiation of viral-specific RNA synthesis constitutes the primary site of mengovirus restriction in MDBK. Rather it appears that the cessation of viral RNA synthesis in restrictive cells constitutes the primary limiting event. Based on its delayed interaction with mengovirus RNA synthesis, it appears that the host-related restrictive agent is initially compartmentalized and then released as a consequence of infection subsequent to those early events in mengovirus infection leading to the initiation and continued synthesis of viral RNA.  相似文献   

7.
Cultures of L cells were synchronized with respect to deoxyribonucleic acid (DNA) synthesis with thymidine and 5-fluoro-2'-deoxyuridine (FUdR) and infected with Newcastle disease virus (NDV), mengovirus, or reovirus 3. Inhibition of incorporation of (3)H-cytidine into the DNA of synchronized cells is partially inhibited 2 hr after infection with NDV or mengovirus and nearly completely suppressed 4 hr after infection. With NDV and mengovirus, no evidence was obtained of differences in sensitivity of cells during early S phase as compared to later stages in DNA synthesis. When cells were infected with reovirus at the time of release from FUdR block, inhibition of cellular DNA synthesis was evident at 2 to 3 hr, and it was complete at 4 to 5 hr after infection. However, when cells were infected several hours prerelease, synthesis of DNA occurred in early S phase in spite of the fact that the cells had been infected for up to 6 hr. The results indicate that DNA synthesis in early S phase is relatively insensitive to the inhibitory function of reovirus. Colorimetric determinations (diphenylamine reaction) of the amounts of DNA produced in synchronized cells have substantiated the inhibition of DNA synthesis observed by isotope incorporation techniques.  相似文献   

8.
Gordon, Irving (University of Southern California, Los Angeles), Sara S. Chenault, Douglas Stevenson, and Jean D. Acton. Effect of interferon on polymerization of single-stranded and double-stranded mengovirus ribonucleic acid. J. Bacteriol. 91:1230-1238. 1966.-The effect of interferon on actinomycin-resistant mengovirus ribonucleic acid (RNA) replication in L cells was investigated to determine whether defective or partially polymerized RNA products were made and whether synthesis of any specific class of virus RNA was prevented. RNA labeled with uridine-C(14) was extracted in hot and cold phenol and analyzed by zonal sucrose density centrifugation. Both single- and double-stranded infectious RNA peaks were identified. Interferon treatment caused almost complete depression of uridine-C(14) incorporation throughout linear sucrose gradients except in the 4S region, and no infectivity was detectable in any fraction. These inhibitory effects are attributable to the action of interferon, because they were reversed when cultures were treated with actinomycin D simultaneously with interferon. The results, with those of other investigators, indicate that the step at which interferon interrupts virus multiplication is between the events immediately after uncoating and the formation of template "minus" strands; under the conditions of our experiments, no partially polymerized virus RNA products were made.  相似文献   

9.
Novikoff cells (strain N1S1-67) and L-67 cells, a nutritional mutant of the common strain of mouse L cells which grows in the same medium as N1S1-67 cells, were infected with mengovirus under identical experimental conditions. The synthesis of host-cell ribonucleic acid (RNA) by either type of cell was not affected quantitatively or qualitatively until about 2 hr after infection, when viral RNA synthesis rapidly displaced the synthesis of cellular RNA. The rate of synthesis of protein by both types of cells continued at the same rate as in uninfected cells until about 3 hr after infection, and a disintegration of polyribosomes occurred only towards the end of the replicative cycle, between 5 and 6 hr. The time courses and extent of synthesis of single-stranded and double-stranded viral RNA and of the production of virus were very similar in both types of cells, in spite of the fact that the normal rate of RNA synthesis and the growth rate of uninfected N1S1-67 cells are about three times greater than those of L-67 cells. In both cells, the commencement of viral RNA synthesis coincided with the induction of viral RNA polymerase, as measured in cell-free extracts. Viral RNA polymerase activity disappeared from infected L-67 cells during the period of production of mature virus, but there was a secondary increase in activity in both types of cells coincidental with virus-induced disintegration of the host cells. Infected L-67 cells, however, disintegrated and released progeny virus much more slowly than N1S1-67 cells. The two strains of cells also differed in that replication of the same strain of mengovirus was markedly inhibited by treating N1S1-67 cells with actinomycin D prior to infection; the same treatment did not affect replication in L-67 cells.  相似文献   

10.
The replication of mengovirus in HeLa cells preinfected with poliovirus in the presence of 10(-3) M guanidine was investigated. Although host cell protein synthesis is inhibited by the presence of nonreplicating poliovirus, it is found that mengovirus ribonucleic acid (RNA) and protein synthesis proceed normally under the same conditions. Furthermore, no effects on mengovirus growth by poliovirus can be detected either when Mengo protein synthesis is interrupted by Acti-Dione or when its RNA synthesis is reduced by incubation at 28 C. It is suggested that the poliovirus inhibitory factor may be able to distinguish between an RNA element required in the protein-synthesizing apparatus of the host cell and a comparable element in that of the heterologous virus.  相似文献   

11.
Infection of Novikoff rat hepatoma cells (subline NlSL-67) with mengovirus resulted in a two- to threefold increase in the rate of choline incorporation into membrane phosphatidylcholine at about 3 hr after infection, without affecting the rate of transport of choline into the cell or its phosphorylation. The time course of virus-stimulated phosphatidylcholine synthesis was compared with the time courses of other virus-induced processes during a single cycle of replication. The formation of viral ribonucleic acid (RNA) polymerase and of viral RNA commenced about 1 hr earlier than the virus-stimulated choline incorporation. Further, isopycnic centrifugation of cytoplasmic extracts indicated that the excess of phosphatidylcholine synthesized by infected cells is not located in the membrane structures associated with the viral RNA replication complex, but with structures of a lower density (1.08 to 1.14 g/cc). These membrane structures probably represent the smooth vesicles which accumulate in the cytoplasm of infected cells during the period of increased phosphatidylcholine synthesis between 3 and 5 hr after infection. They are formed with both newly synthesized phosphatidylcholine and phosphatidylcholine present prior to infection. However, concomitant protein synthesis is not required for the stimulated synthesis of membranes; the effect was not inhibited by treating the cells with inhibitors of protein synthesis at 3 hr after infection, although virus production was inhibited about 90% and virus-induced cell degeneration was markedly reduced and delayed. Production of mature virus began normally at about the same time as the stimulation of phosphatidylcholine synthesis. Treatment of infected cells with puromycin at 2 hr, on the other hand, completely inhibited the stimulation of phosphatidylcholine synthesis.  相似文献   

12.
13.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J. Bacteriol. 91:2317-2326. 1966.-The replication of mengovirus was studied in two strains of Novikoff (rat) hepatoma cells propagated in vitro. The replicative cycle in both strains required 6.5 to 7 hr. Infection resulted in a marked depression of ribonucleic acid (RNA) and protein synthesis by strain N1S1-63. Inhibition of RNA synthesis was reflected by a decrease in the deoxyribonucleic acid (DNA)-dependent RNA polymerase activity of isolated nuclei. Mengovirus had no effect on either protein or RNA synthesis or on the DNA-dependent RNA polymerase activity of a second strain, N1S1-67. The time course of viral-induced synthesis of RNA by cells was studied in cells treated with actinomycin D. It was first detectable between 2.5 and 3 hr after infection and continued until 6.5 to 7 hr. The formation of mature virus was estimated biochemically by measuring the amount of RNA synthesized as a result of viral infection which was resistant to degradation by ribonuclease in the presence of deoxycholate. Approximately 70% of the deoxycholate-ribonuclease-resistant RNA was located in mature virus, and the remainder was double-stranded. The formation of mature virus began about 45 min after viral-directed (actinomycin-resistant) synthesis of RNA was detectable in the cell, and only about 18 to 20% of the total RNA synthesized was incorporated into virus. Release of virus from cells began about 1 hr after maturation was first detectable. Release of virus from cells was accompanied by a loss of a large proportion of their cytoplasmic RNA and protein.  相似文献   

14.
A series of 9-beta-D-ribofuranosyl-6-alkylthiopurines (6-alkyl TI) were found to inhibit in vitro replication of infectious hematopoietic necrosis virus (IHNV), human influenza virus (IFV) and respiratory syncytial virus (RSV) with IC50 values of about 0.06 microgram/ml, 0.7-1.5 micrograms/ml and 1-3 micrograms/ml, respectively. Viral RNA synthesis in infected cells in the presence of actinomycin D was inhibited by treatment with the compounds dose-dependently. It was also found that the decrease of rNTP pool size in infected cells was remarkably dose-dependent. From these findings, the mode of antiviral action of these compounds may be explained by rNTP imbalance in the treated group.  相似文献   

15.
16.
Dipyridamole is an effective inhibitor of cardiovirus growth in cell culture. The effects of dipyridamole on mengovirus replication in vivo and in vitro were examined in the hope the drug could be used as an experimental analog of the poliovirus inhibitor guanidine. Guanidine selectively inhibits poliovirus RNA synthesis but not RNA translation, and as such, has been a valuable research tool. Although guanidine does not inhibit cardiovirus infection, a compound with similar discriminatory characteristics would be experimentally useful for parallel work with these viruses. We found that mengovirus plaque formation in HeLa or L cells was inhibited nearly 100% by the presence of 80 muM dipyridamole. The inhibitory effect was reversible and targeted an early step in the replication cycle. Studies with luciferase-expressing mengovirus replicons showed that viral protein synthesis was unaffected by dipyridamole, and rather, RNA synthesis was the step targeted by the drug. This assessment was confirmed by direct analyses of viral translation and RNA synthesis activities in a Krebs-2-derived in vitro system that supported complete, infectious cardiovirus replication. In Krebs extracts, dipyridamole specifically inhibited viral RNA synthesis to more than 95%, with no concomitant effect on viral protein translation or polyprotein processing. The observed inhibition reversibly affected an early step in both minus-strand and plus-strand RNA synthesis, although inhibition of plus-strand synthesis was more profound than that of minus-strand synthesis. We conclude that dipyridamole is a potent experimental tool that readily distinguishes between cardiovirus translation and RNA replication functions.  相似文献   

17.
The expression of herpes simplex virus (HSV) type-common surface antigens (CSA) in a representative cell clone (155-4-03) of hamster cell line 155-4 transformed by HSV type 2 was enhanced by treatment with inhibitors of RNA synthesis [adriamycin (ADM) and daunomycin] but not with inhibitors of DNA synthesis (2-iododeoxyuridine, bleomycin, mitomycin C and cytosine arabinoside), although all these drugs decreased the number of viable cells to a similar extent. ADM-enhanced CSA expression in the clone was inhibited by puromycin and 2-deoxy-d-glucose, suggesting that the enhanced expression required both protein synthesis and glycosylation. This enhanced expression was sensitive to protease inhibitors (antipain and p-nitrophenyl-p'-guanidinobenzoate) and procaine, which is known to inhibit trypsin action and the organization of cell membrane-associated cytoskeletal elements (microfilaments and microtubules). Furthermore, low concentrations of ADM (0.1 microgram/ml) and actinomycin D (0.5 microgram/ml) enhanced CSA expression additively, but the most effective concentrations of ADM (0.25 microgram/ml) and actinomycin D (2 microgram/ml) did not. These findings indicated that the two drugs enhance CSA expression in the clone by a common mechanism.  相似文献   

18.
Colchicine, at a concentration of 5 X 10(-4) M (0.2 microgram/ml), inhibits interferon synthesis induced by theLee strain of influenza B virus in chick embryo cells, but it does not influence the release of preformed interferon from cells. The same drug concentration does not affect the overall synthesis of cellular RNA and protein. The inhibition of interferon synthesis by colchicine is a temperature-dependent process and is not manifested at 0 degrees C. Colchicine is found to be most effective when it is introduced into the medium at early stages of infection. It is suggested that colchicine inhibits the formation of messenger RNA for interferonogenesis.  相似文献   

19.
Synthesis of reovirus ribonucleic acid in L cells   总被引:21,自引:0,他引:21  
Kudo, Hajime (The Wistar Institute of Anatomy and Biology, Philadelphia, Pa.), and A. F. Graham. Synthesis of reovirus ribonucleic acid in L cells. J. Bacteriol. 90:936-945. 1965.-There is no inhibition of protein or deoxyribonucleic acid (DNA) synthesis in L cells infected with reovirus until the time that new virus starts to form about 8 hr after infection. At this time, both protein synthesis and DNA synthesis commence to be inhibited. Neither the synthesis of ribosomal ribonucleic acid (RNA) nor that of the rapidly labeled RNA of the cell nucleus is inhibited before 10 hr after infection. Actinomycin at a concentration of 0.5 mug/ml does not inhibit the formation of reovirus, although higher concentrations of the antibiotic do so. Pulse-labeling experiments with uridine-C(14) carried out in the presence of 0.5 mug/ml of actinomycin show that, at 6 to 8 hr after infection, two species of virus-specific RNA begin to form and increase in quantity as time goes on. One species is sensitive to ribonuclease action and the other is very resistant. The latter RNA is probably double-stranded viral progeny RNA, and it constitutes approximately 40% of the RNA formed up to 16 hr after infection. The function of the ribonuclease-sensitive RNA is not yet known. Synthesis of both species of RNA is inhibited by 5 mug/ml of actinomycin added at early times after infection. Added 6 to 8 hr after infection, when virus-specific RNA has already commenced to form, 5 mug/ml of actinomycin no longer inhibit the formation of either species of RNA.  相似文献   

20.
We have shown previously that target-sensitive immunoliposomes composed of palmitoyl antibody stabilized phosphatidylethanolamine bilayers could be destabilized by binding to the target cells (Ho, R. J. Y., Rouse, B. T., and Huang, L., Biochemistry (1986) 25, 5500-5506). Target-sensitive immunoliposome-encapsulated and free cytotoxic drugs of nucleoside analogs cytosine-beta-D-arabinoside (AraC) or acycloguanosine (acyclovir, ACV) were compared for their antiviral efficacy and cell cytotoxicity. Target-insensitive immunoliposomes and nontargeted liposomes were also investigated. When the mouse fibroblast L929 cells were infected at low multiplicity with herpes simplex virus, AraC encapsulated in target-sensitive immunoliposomes composed of transphosphatidylated egg phosphatidylethanolamine effectively inhibited virus replication and had far less cell cytotoxicity than free drug. As a measure of cytotoxicity, the drug concentration required to inhibit 50% of [3H]thymidine incorporation from 6 to 42 h (CD50) was determined. For free AraC, this value was 0.3 ng/ml, whereas for target-sensitive immunoliposome-encapsulated AraC, the CD50 exceeded 1 microgram/ml. However, target-sensitive immunoliposome-encapsulated AraC was virus inhibitory (50% effective dose = ED50) at 1.8 ng/ml. A free drug concentration of at least 1000-fold greater was required for comparable antiviral activity. A similar phenomenon was observed when ACV was administered via target-sensitive immunoliposomes. The CD50 values of the free and target-sensitive immunoliposome-encapsulated ACV were 12.5 ng/ml and 1.4 micrograms/ml, respectively, whereas the ED50 values of the free and target-sensitive immunoliposome-encapsulated ACV were 1.1 and 125 ng/ml, respectively. Consequently, our results indicated the superiority of target-sensitive immunoliposomes at drug delivery, especially when drugs were cytotoxic to cells. The use of liposomes of the target-insensitive variety provided some enhancement of activity, but this was several-fold less than that observed with target-sensitive immunoliposomes. In addition, the nucleoside transport inhibitors, p-nitrothiobenzylinosine and dipyridamole, were shown to inhibit the liposome-mediated antiviral activity of AraC. This finding indicated that site-specific cytosolic delivery of nucleoside analogs by target-sensitive immunoliposomes involved a cellular nucleoside transport system. A mechanism of action is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号