首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

2.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

3.
Landscape genetics is the amalgamation of landscape ecology and population genetics to help with understanding microevolutionary processes such as gene flow and adaptation. In this review, we examine why landscape genetics of plants lags behind that of animals, both in number of studies and consideration of landscape elements. The classical landscape distance/resistance approach to study gene flow is challenging in plants, whereas boundary detection and the assessment of contemporary gene flow are more feasible. By contrast, the new field of landscape genetics of adaptive genetic variation, establishing the relationship between adaptive genomic regions and environmental factors in natural populations, is prominent in plant studies. Landscape genetics is ideally suited to study processes such as migration and adaptation under global change.  相似文献   

4.
基于景观遗传学的滇金丝猴栖息地连接度分析   总被引:1,自引:0,他引:1  
薛亚东  李丽  李迪强  吴巩胜  周跃  吕玺喜 《生态学报》2011,31(20):5886-5893
结合景观遗传学,应用最小费用距离模型对物种栖息地进行连接度分析,能够为生物多样性保护和自然保护区管理提供更加真实准确及可实践操作的指导。选取滇金丝猴这一珍稀濒危物种,结合景观遗传学,应用最小费用距离模型对其栖息地进行了连接度和潜在扩散廊道分析。并且通过连接度的分析和制图绘制出了更为准确的种群间潜在扩散廊道,确定了受人工障碍影响的廊道及敏感区域。结果表明,研究区内的5个亚群中,仅S3亚群内的5个猴群保持着较好的连接度,总体来说,各亚群内的连接度相对于各亚群间连接度保持的较好。除S3亚群中猴群间的潜在扩散廊道较为理想外,其余种群间的潜在扩散廊道均受人工斑块的影响,多数廊道被人工障碍阻断,或面临即将被阻断的情况,对于滇金丝猴的扩散交流影响较大。敏感区域多集中在中南部的3个亚群间,这些敏感区域应作为景观恢复及保护区规划的重要优先区域。  相似文献   

5.
Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate‐induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression‐based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression‐based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions.  相似文献   

6.
景观遗传学原理及其在生境片断化遗传效应研究中的应用   总被引:1,自引:0,他引:1  
沈泽昊  吉成均 《生态学报》2010,30(18):5066-5076
景观遗传学是近年来在景观生态学和种群遗传学之间形成的一个交叉领域,强调景观的组成、空间构型和环境梯度对基因流、种群遗传空间结构和局域种群适应的影响。景观遗传学尚未成为一门独立的学科,其理论基础主要来自分子遗传学、种群生物学和景观生态学。现代分子遗传标记技术、遥感和GIS支持下的景观分析和空间统计方法的综合运用是景观遗传学主要研究途径。系统介绍了景观遗传学的基础概念,关键科学问题,基本理论框架,及其与相邻研究领域的关系,综述了景观遗传学最为关注的现实课题——景观碎裂化的种群遗传效应的研究进展,主要涉及生境片断化的遗传效应、不同属性的物种响应、以及生境片断化过程的选择作用等方面。通过采取一种跨尺度的视角,景观遗传学研究显著深化了关于景观碎裂化对生物多样性影响的理解。  相似文献   

7.
Emerging infectious diseases are increasingly recognized in species’ declines and extinctions. Landscape genetics can be used as a tool to predict disease emergence and spread. The Tasmanian devil is threatened with extinction by a nearly 100% fatal transmissible cancer, which has spread across 95% of the species’ geographic range in 20 years. Here, we present a landscape genetic analysis in the last remaining uninfected parts of the Tasmanian devil’s geographic range to: describe population genetic structure, characterize genetic diversity, and test the influence of landscape variables on Tasmanian devil gene flow to assess the potential for disease spread. In contrast to previous genetic studies on Tasmanian devils showing evidence for two genetic populations island-wide, our genetic based assignment tests and spatial principal components analyses suggest at least two, and possibly three, populations in a study area that is approximately 15% of the size of the overall species’ geographic range. Positive spatial autocorrelation declined at about 40 km, in contrast to 80 km in eastern populations, highlighting the need for range-wide genetic studies. Strong genetic structure was found between devils in the northern part of the study area and those found south of Macquarie Harbor, with weaker structure found between the northeastern and northwestern portion of our study area. Consistent with previous work, we found low overall genetic diversity, likely owing to a combination of founder effects and extreme weather events thousands of years ago that likely caused large-scale population declines. We also found possible signs of recent bottlenecks, perhaps resulting from forest clearing for dairy farming in the central part of the study area. This human disturbance also may have contributed to weak genetic structuring detected between the northeastern and northwestern part of the study area. Individual-based least cost path modeling showed limited influence of landscape variables on gene flow, with weak effects of variation in elevation in the northeast. In the northwest, however, landscape genetic models did not perform better than the null isolation-by-distance model. At the larger spatial scale of the northern part of the study area, elevation and temperatures were negatively correlated with gene flow, consistent with low dispersal suitability of higher elevation habitats that have lower temperatures and dense, wet vegetation. Overall, Tasmanian devils are a highly vagile species for which dispersal and gene flow appear to be influenced little by landscape features, and spread of devil facial tumor disease to the remaining portion of the devil’s geographic range seems imminent. Nonetheless, strong genetic structure found between the northern and southern portions of our study area, combined with low densities and limited possible colonization of DFTD from the east suggest there is some time for implementation of management strategies.  相似文献   

8.
植物景观遗传学研究进展   总被引:2,自引:0,他引:2  
宋有涛  孙子程  朱京海 《生态学报》2017,37(22):7410-7417
植物景观遗传学是新兴的景观遗传学交叉学科的一个重要研究方向。目前植物景观遗传学的研究虽落后于动物,但其在生物多样性保护方面具有的巨大潜力不可忽视。从景观特征对遗传结构、环境因素对适应性遗传变异影响两个方面,系统综述了近十年来国际上植物景观遗传学的研究焦点和研究进展,比较了植物景观遗传学与动物景观遗传学研究在研究设计和研究方法上的异同,并基于将来植物景观遗传学由对空间遗传结构的描述发展为对景观遗传效应的量化分析及预测的发展框架,具体针对目前景观特征与遗传结构研究设计的系统性差、遗传结构与景观格局在时间上的误配、适应性位点与环境变量的模糊匹配、中性遗传变异与适应性遗传变异研究的分隔、景观与遗传关系分析方法的局限等五个方面提出了研究对策。  相似文献   

9.
Landscape genetics has tremendous potential for enhancing our understanding about landscape effects on effective dispersal and resulting genetic structures. However, the vast majority of landscape genetic studies focus on effects of the landscape among sampling locations on dispersal (i.e. matrix quality), while effects of local environmental conditions are rather neglected. Such local environmental conditions include patch size, habitat type or resource availability and are commonly used in (meta‐) population ecology and population genetics. In our opinion, landscape genetic studies would greatly benefit from simultaneously incorporating both matrix quality and local environmental conditions when assessing landscape effects on effective dispersal. To illustrate this point, we first outline the various ways in which environmental heterogeneity can influence different stages of the dispersal process. We then propose a three‐step approach for assessing local and matrix effects on effective dispersal and review how both types of effects can be considered in landscape genetic analyses. Using simulated data, we show that it is possible to correctly disentangle the relative importance of matrix quality vs. local environmental conditions for effective dispersal. We argue that differentiating local and matrix effects in such a way is crucial for predicting future species distribution and persistence, and for optimal conservation decisions that are based on landscape genetics. In sum, we think it is timely to move beyond purely statistical, pattern‐oriented analyses in landscape genetics and towards process‐oriented approaches that consider the full range of possible landscape effects on dispersal behaviour and resulting gene flow.  相似文献   

10.
E M Kierepka  E K Latch 《Heredity》2016,116(1):33-43
Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics.  相似文献   

11.
Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomyschasiquensis”, a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. “chasiquensis” are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.  相似文献   

12.
Landscape genetics seeks to determine the effect of landscape features on gene flow and genetic structure. Often, such analyses are intended to inform conservation and management. However, depending on the many factors that influence the time to reach equilibrium, genetic structure may more strongly represent past rather than contemporary landscapes. This well‐known lag between current demographic processes and population genetic structure often makes it challenging to interpret how contemporary landscapes and anthropogenic activity shape gene flow. Here, we review the theoretical framework for factors that influence time lags, summarize approaches to address this temporal disconnect in landscape genetic studies, and evaluate ways to make inferences about landscape change and its effects on species using genetic data alone or in combination with other data. Those approaches include comparing correlation of genetic structure with historical versus contemporary landscapes, using molecular markers with different rates of evolution, contrasting metrics of genetic structure and gene flow that reflect population genetic processes operating at different temporal scales, comparing historical and contemporary samples, combining genetic data with contemporary estimates of species distribution or movement, and controlling for phylogeographic history. We recommend using simulated data sets to explore time lags in genetic structure, and argue that time lags should be explicitly considered both when designing and interpreting landscape genetic studies. We conclude that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines, particularly when genetic data are combined with other data.  相似文献   

13.
The landscape can influence host dispersal and density, which in turn, affect infectious disease transmission, spread, and persistence. Understanding how the landscape influences wildlife dispersal and pathogen epidemiology can enhance the efficacy of disease management in natural populations. We applied landscape genetics to examine relationships among landscape variables, dispersal of white-tailed deer hosts and transmission/spread of chronic wasting disease (CWD), a fatal prion encephalopathy. Our focus was on quantifying movements and population structure of host deer in infected areas as a means of predicting the spread of this pathology and promoting its adaptive management. We analyzed microsatellite genotypes of CWD-infected and uninfected deer from two disease foci (Southern Wisconsin, Northern Illinois). We quantified gene flow and population structure using F ST, assignment tests, and spatial autocorrelation analyses. Gene flow estimates were then contrasted against a suite of landscape variables that potentially mediate deer dispersal. Forest fragmentation and grassland connectivity promoted deer movements while rivers, agricultural fields and large urbanized areas impeded movement. Landscape variables, deer dispersal, and disease transmission covaried significantly and positively in our analyses. Habitats with elevated host gene flow supported the concept of dispersal-mediated CWD transmission by reflecting a concomitant, rapid CWD expansion. Large, interrelated social groups isolated by movement barriers overlapped disease foci, suggesting that philopatry exacerbated CWD transmission. Our results promote adaptive management of CWD by predicting patterns of its spread and identifying habitats at risk for invasion. Further, our landscape genetics approach underscores the significance of topography and host behavior in wildlife disease transmission.  相似文献   

14.
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.  相似文献   

15.
IAN J. WANG 《Molecular ecology》2011,20(12):2480-2482
Landscape genetics and phylogeography both examine population‐level microevolutionary processes, such as population structure and gene flow, in the context of environmental and geographic variation. They differ in terms of the spatial and temporal scales they typically investigate, meaning that different genetic markers and analytical methods are better suited for testing the different hypotheses typically posed by each discipline. In a recent comment, Bohonak & Vandergast (2011) argue that I overlooked the value of mtDNA for landscape genetics in an article I published last year in Molecular Ecology (Wang 2010) and that a gap between landscape genetics and phylogeography, which I outlined, does not exist. Here, I clarify several points in my original article and summarize the commonly held viewpoint that different genetic markers are appropriate for drawing inferences at different temporal scales.  相似文献   

16.
Landscape genetics, which combines population genetics, landscape ecology and spatial statistics, has emerged recently as a new discipline that can be used to assess how landscape features or environmental variables can influence gene flow and spatial genetic variation. We applied this approach to the invasive plant pathogenic fungus Mycosphaerella fijiensis, which causes black leaf streak disease of banana. Around 880 isolates were sampled within a 50 × 50 km area located in a fragmented banana production zone in Cameroon that includes several potential physical barriers to gene flow. Two clustering algorithms and a new F(ST) -based procedure were applied to define the number of genetic entities and their spatial domain without a priori assumptions. Two populations were clearly delineated, and the genetic discontinuity appeared sharp but asymmetric. Interestingly, no landscape features matched this genetic discontinuity, and no isolation by distance (IBD) was found within populations. Our results suggest that the genetic structure observed in this production area reflects the recent history of M. fijiensis expansion in Cameroon rather than resulting from contemporary gene flow. Finally, we discuss the influence of the suspected high effective population size for such an organism on (i) the absence of an IBD signal, (ii) the characterization of contemporary gene-flow events through assignation methods of analysis and (iii) the evolution of the genetic discontinuity detected in this study.  相似文献   

17.
Landscape genetics was developed to detect landscape elements shaping genetic population structure, including the effects of fragmentation. Multifarious environmental variables can influence gene flow in different ways and expert knowledge is frequently used to construct friction maps. However, the extent of the migration and the movement of single individuals are frequently unknown, especially for non-model species, and friction maps only based on expert knowledge can be misleading. In this study, we used three different methods: isolation by distance (IBD), least-cost modelling and a strip-based approach to disentangle the human implication in the fragmentation process in the slow worm (Anguis fragilis), as well as the specific landscape elements shaping the genetic structure in a highly anthropized 16 km2 area in Switzerland. Friction maps were constructed using expert opinion, but also based on the combination of all possible weightings for all landscape elements. The IBD indicated a significant effect of geographic distance on genetic differentiation. Further approaches demonstrated that highways and railways were the most important elements impeding the gene flow in this area. Surprisingly, we also found that agricultural areas and dense forests seemed to be used as dispersal corridors. These results confirmed that the slow worm has relatively unspecific habitat requirements. Finally, we showed that our models based on expert knowledge performed poorly compared to cautious analysis of each variable. This study demonstrated that landscape genetic analyses should take expert knowledge with caution and exhaustive analyses of each landscape element without a priori knowledge and different methods can be recommended.  相似文献   

18.
Apex predators are important indicators of intact natural ecosystems. They are also sensitive to urbanization because they require broad home ranges and extensive contiguous habitat to support their prey base. Pumas (Puma concolor) can persist near human developed areas, but urbanization may be detrimental to their movement ecology, population structure, and genetic diversity. To investigate potential effects of urbanization in population connectivity of pumas, we performed a landscape genomics study of 130 pumas on the rural Western Slope and more urbanized Front Range of Colorado, USA. Over 12,000 single nucleotide polymorphisms (SNPs) were genotyped using double‐digest, restriction site‐associated DNA sequencing (ddRADseq). We investigated patterns of gene flow and genetic diversity, and tested for correlations between key landscape variables and genetic distance to assess the effects of urbanization and other landscape factors on gene flow. Levels of genetic diversity were similar for the Western Slope and Front Range, but effective population sizes were smaller, genetic distances were higher, and there was more admixture in the more urbanized Front Range. Forest cover was strongly positively associated with puma gene flow on the Western Slope, while impervious surfaces restricted gene flow and more open, natural habitats enhanced gene flow on the Front Range. Landscape genomic analyses revealed differences in puma movement and gene flow patterns in rural versus urban settings. Our results highlight the utility of dense, genome‐scale markers to document subtle impacts of urbanization on a wide‐ranging carnivore living near a large urban center.  相似文献   

19.
Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as ‘the invisible regulators’ of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro‐ and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in ‘macro’‐landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro‐ and macroecological processes and expand our knowledge of species’ distributions, adaptive mechanisms and species’ interactions in changing environments.  相似文献   

20.
Landscape genetics increasingly focuses on the way in which landscape features cause the fragmentation of lineages of terrestrial organisms. However, landscape features can also provide functional connectivity or corridors, enhancing the dispersal of plant populations, particularly the case in riparian habitat. Unfortunately, recent research in tree genetics has paid little attention to this role. To examine the possible effects of landscape connectivity on the current population genetic distribution of Fraxinus mandshurica and to provide insights into conserving the local genetic diversity for this endangered tree species, we used nine nuclear microsatellite loci to examine the spatial genetic structure of F. mandshurica at multiple-scales over a riparian–mountain landscape in Northeast China. F-statistics indicated that the magnitude of among-population genetic differentiation was significantly higher between the riparian and mountain habitats than within the riparian habitat. Spatial analysis of molecular variance and principal coordinate analysis consistently revealed that this species exhibited a clear landscape genetic structure between the riparian and mountain habitats, despite no significant isolation by distance pattern being identified by the Mantel test. Spatial autocorrelation analysis further demonstrated significant, positive fine-scale spatial genetic structure among individuals over short distances (<80 m) in each mountain population. Conversely, no spatial genetic structures were identified within and among the riparian populations. Overall, the results suggest that seed dispersal is very low among mountain populations; however seed transport is probably enhanced by a secondary phase of hydrochory (water-dispersal) among riparian populations during flooding. Despite this, there was no significant accumulation of genetic diversity in downstream populations along the main channel. This result suggests that hydrochory is not sufficient to produce a clear unidirectional gene flow along the water course, although it may impede the development of spatial genetic structuring within and among riparian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号