首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of regurgitant from Leptinotarsa decemlineata Say larvae on wound-induced responses was studied using two plant species, Solanum tuberosum L. and Phaseolus vulgaris L. Wounding of one leaf of intact S. tuberosum plants differentially affected ethylene production and activities of peroxidase and polyphenol oxidase. Only polyphenol oxidase activity was stimulated by wounding in both wounded and systemic leaves. Peroxidase activity was not affected by wounding. Wounding caused only a transient increase of ethylene production from wounded leaves. The application of regurgitant to wound surfaces stimulated ethylene production as well as activities of peroxidase and polyphenol oxidase in both wounded and systemic leaves. Wounding significantly enhanced ethylene production and polyphenol oxidase activity in wounded and systemic leaves of P. vulgaris . The application of regurgitant caused an amplification of ethylene production, peroxidase activity, and polyphenol oxidase activity, in both wounded and systemic leaves of bean plants. Several substances were tested for their role as possible endogenous signals in P. vulgaris . Hydrogen peroxide and methyl jasmonate appeared as potential local and systemic signals of ethylene formation in wounded bean plants. Local ethylene production in leaf discs was differentially affected by the regurgitant application in potato versus bean plants. While all tested concentrations of regurgitant caused stimulation of ethylene formation from potato leaf discs, ethylene production was completely inhibited by increasing concentrations of the regurgitant in bean leaf discs. Our data present evidence that ethylene may play an important role in the interaction between plants and herbivores at the level of recognition of a particular herbivore leading to specific induction of signalling cascades.  相似文献   

2.
This study aimed to examine the induction of defense responses in tomato elicited by Methylobacterium oryzae CBMB20 as a consequence of reduced stress ethylene level possibly through its ACC deaminase activity. Significantly increased activities of pathogenesis-related (PR) proteins and defense enzymes such as β-1,3-glucanase, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were noted in M. oryzae CBMB20 pretreated and challenged with Pseudomonas syringae pv. tomato (Pst) compared to either control or M. oryzae-treated tomato plants in both growth chamber and greenhouse conditions. Increased PR proteins and defense enzyme activities were correlated with the reduction of stress ethylene level. M. oryzae CBMB20 reduced the stress ethylene level about 27% and 55% when challenged with Pst, in growth chamber and greenhouse on day 7 respectively and the effect was comparable to that of the chemical ethylene biosynthesis inhibitor AVG, L-α-(2-aminoethoxyvinyl)-glycine hydrochloride. As a consequence of reduced stress ethylene level and its effect on defense response in crop plants, the disease severity was reduced 26% in M. oryzae CBMB20-treated plants challenged with pathogen. Therefore, inoculation of M. oryzae CBMB20 would induce the defense enzymes and contribute to the enhanced resistance of tomato plants against the pathogen Pst.  相似文献   

3.
* Here we report the effect of mechanical wounding on putrescine biosynthesis and catabolism in oilseed rape (Brassica napus ssp. oleifera). * The lamina of first leaves was wounded by crushing with forceps, and first and second leaves were harvested at various intervals over a 24 h period. Levels of free polyamines were measured and activities of enzymes of polyamine biosynthesis and catabolism were assayed in the harvested tissue. * Mechanical wounding of the first leaves led to significant, but transient, increases in arginine decarboxylase (ADC) activity and levels of free putrescine in the wounded first leaf and in unwounded second leaves. The increased putrescine appeared to be the result of a combination of increased ADC activity, coupled with reduced putrescine catabolism, as activity of the oxidative enzyme diamine oxidase was significantly reduced following wounding, both locally and systemically. * The role of the increased free putrescine in the wound response of oilseed rape is not known, although the possibility that it is used to form putrescine conjugates is worthy of further investigation.  相似文献   

4.
Wounding increased the extracellular Adenosine 5?-triphosphate (eATP) level of kidney bean leaves. Treatment with wounding or exogenous ATP increased the hydrogen peroxide (H2O2) content, activities of catalase and polyphenol oxidase, and malondialdehyde content in both the treated and systemic leaves. Pre-treatment with ATP-degrading enzyme, apyrase, to the wounded leaves reduced the wound-induced local and systemic increases in H2O2 content, activities of catalase and polyphenol oxidase, and malondialdehyde content. Application of dimethylthiourea (DMTU) and diphenylene iodonium (DPI) to the wounded and ATP-treated leaves, respectively, reduced the wound- and ATP-induced local and systemic increases in H2O2 content, activities of catalase and polyphenol oxidase, and malondialdehyde content. Moreover, the wound- and ATP-induced systemic increases of these physiological parameters were suppressed when DMTU or DPI applied to leaf petiole of the wounded and ATP-treated leaves. These results suggest that eATP at wounded sites could mediate the wound-induced local and systemic responses by H2O2-dependent signal transduction.  相似文献   

5.
Ethylene is a stress hormone involved in early senescence and abscission of vegetative and reproductive organs under stress conditions. Ethylene perception inhibitors can minimize the impact of ethylene-mediated stress. The effects of high temperature (HT) stress during flowering on ethylene production rate in leaf, flower and pod and the effects of ethylene inhibitor on ethylene production rate, oxidative damage and physiology of soybean are not understood. We hypothesize that HT stress induces ethylene production, which causes premature leaf senescence and flower and pod abscission, and that application of the ethylene perception inhibitor 1-Methyl cyclopropene (1-MCP) can minimize HT stress induced ethylene response in soybean. The objectives of this study were to (1) determine whether ethylene is produced in HT stress; (2) quantify the effects of HT stress and 1-MCP application on oxidative injury; and (3) evaluate the efficacy of 1-MCP at minimizing HT-stress-induced leaf senescence and flower abscission. Soybean plants were exposed to HT (38/28 °C) or optimum temperature (OT; 28/18 °C) for 14 d at flowering stage (R2). Plants at each temperature were treated with 1-MCP (1 μg L−1) gas for 5 h or left untreated (control). High temperature stress increased rate of ethylene production in leaves, flowers and pods, production of reactive oxygen species (ROS), membrane damage, and total soluble carbohydrate content in leaves and decreased photosynthetic rate, sucrose content, Fv/Fm ratio and antioxidant enzyme activities compared with OT. Foliar spray of 1-MCP decreased rate of ethylene production and ROS and leaf senescence traits but enhanced antioxidant enzyme activities (e.g. superoxide dismutase and catalase). In conclusion, HT stress increased ethylene production rates, caused oxidative damage, decreased antioxidant enzyme activity, caused premature leaf senescence, increased flower abscission and decreased pod set percentage. Application of 1-MCP lowered ethylene and ROS production, enhanced antioxidant enzyme activity, increased membrane stability, delayed leaf senescence, decreased flower abscission and increased pod set percentage. The beneficial effects of 1-MCP were greater under HT stress compared to OT in terms of decreased ethylene production, decreased ROS production, increased antioxidant protection, decreased flower abscission and increased pod set percentage.  相似文献   

6.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   

7.
Cakmak  I.  Marschner  H. 《Plant and Soil》1993,155(1):127-130
The effect of varied zinc (Zn) supply on the activities of superoxide dismutase (SOD), ascorbate (AsA) peroxidase, glutathione (GSSG) reductase, catalase and guaiacol peroxidase was studied in leaves of bean (Phaseolus vulgaris) plants grown for 15 days in nutrient solution. Zinc deficiency severely decreased plant growth and the leaf concentrations of soluble protein and chlorophyll. Resupply of Zn to deficient plants for up to 72h restored protein concentrations more rapidly than chlorophyll and plant growth. With the exception of guaiacol peroxidase, the activities of all enzymes were significantly decreased by Zn deficiency, in particular GSSG reductase and SOD. Within 72h of resupplying Zn to deficient plants, the enzyme activities reached the level of the Zn sufficient plants. The results indicate severe impairment in the ability of Zn-deficient leaves to enzymically scavenge O2 - and H2O2. Consequences and reasons of this impairment are discussed in terms of photooxidation of chloroplast pigments and inhibition of the biosynthesis of the related scavenger enzyme proteins.  相似文献   

8.
The objective of this study was to examine the role of antioxidant enzymes in waterlogging tolerance of pigeonpea (Cajanus cajan L. Halls) genotypes ICP 301 (tolerant) and Pusa 207 (susceptible). Waterlogging resulted in visible yellowing and senescence of leaves, decrease in leaf area, dry matter, relative water content and chlorophyll content in leaves, and membrane stability index in roots and leaves. The decline in all parameters was greater in Pusa 207 than ICP 301. Oxidative stress in the form of superoxide radical, hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) contents initially decreased, however at 4 and 6 d of waterlogging it increased over control plants, probably due to activation of DPI-sensitive NADPH-oxidase. Antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase also increased under waterlogging. The comparatively greater antioxidant enzyme activities resulting in less oxidative stress in ICP 301 could be one of the factor determining its higher tolerance to flooding as compared to Pusa 207. This study is the first to conclusively prove that waterlogging induced increase in ROS is via NADPH oxidase.  相似文献   

9.
Changes in the level of endogenous formaldehyde (HCHO), some N-methylated compounds (choline and trigonelline) and peroxidase activity were examined in the leaves of bean genotypes (Phaseolus vulgaris L.) with different disease-sensitivity during ontogenesis in the stressfree condition and after natural infection by Pseudomonas savastanoi pv. phaseolicola (until the appearance of lesions). HCHO, as its dimedone adduct, and fully N-methylated compounds were determined by overpressured layer chromatography (OPLC) in different developmental stages and in the infected leaves/leaf discs. Peroxidase activity was measured by a spectrophotometric method. HCHO level decreased with ageing of the primary leaf and accordingly in the leaves at different developmental stages, then increased again in both cases due to the demethylation and methylation processes. Concentration of choline and trigonelline as potential HCHO generators decreased considerably while peroxidase activity increased with ageing of the plants. Comparing the symptomless and the Pseudomonas infected leaf discs (with watersoaked lesions) we found a decrease in the level of HCHO, choline and trigonelline and there was detectable increase in the peroxidase activity in the infected leaf tissues. Our findings are in accordance with previously published results that peroxidases play an important role in oxidative demethylation processes. Our hypothesis is that the high level of HCHO in the old leaves can originate from methylated components as the result of peroxidase activity and this high level may lead to the old leaf being resistant to pathogen. This conclusion is supported by the fact that the leaves of susceptible bean genotypes became resistant to Pseudomonas while growing older.  相似文献   

10.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

11.
2-Benzoxazolinone (BOA), a well-known allelochemical with strong phytotoxicity, is a potential herbicidal candidate. The aim of the present study was to determine whether phytotoxicity of BOA is due to induction of oxidative stress caused by generation of reactive oxygen species (ROS) and the changes in levels of antioxidant enzymes induced in response to BOA. Effect of BOA was studied on electrolyte leakage, lipid peroxidation (LP), hydrogen peroxide (H(2)O(2)) generation, proline (PRO) accumulation, and activities of antioxidant enzymes-superoxide dismutase (SOD, 1.15.1.1), ascorbate peroxidase (APX, 1.11.1.11), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6) and glutathione reductase (GR, 1.6.4.2) in Phaseolus aureus (mung bean). BOA significantly enhanced malondialdehyde (MDA) content, a product of LP, in both leaves and roots of mung bean. The amount of H(2)O(2), a product of oxidative stress, and endogenous PRO increased many-fold in response to BOA. Accumulation of PRO, MDA and H(2)O(2) indicates the cellular damage in the target tissue caused by ROS generated by BOA. In response to BOA, there was a significant increase in the activities of scavenging enzymes SOD, APX, GPX, CAT, and GR in root and leaf tissue of mung bean. At 5 mM BOA, GR activity in roots showed a nearly 22-fold increase over that in control. The present study concludes that BOA induces oxidative stress in mung bean through generation of ROS and upregulation of activities of various scavenging enzymes.  相似文献   

12.
The effect of 1-methylcyclopropene (1-MCP), which inhibits the reception of ethylene, on the following has been studied: hydrogen peroxide generation, oxalate oxidase activity, peroxidase activity, catalase activity, and lignin accumulation in infected leaves of soft spring wheat (Triticum aestivum L.) cultivars that differ in their resistance to the leaf blotch disease, caused by the hemibiotrophic fungus Septoria nodorum Berk. A decrease in the development of leaf blotch in wheat leaves under the influence of 1-MCP was, on one hand, followed by an inhibition of catalase activity; on the other hand, it was accompanied by an increase in oxalate oxidase and peroxidase activity, as well as an accumulation of H2O2 in tissues and lignin in the infected zone. The role of the ethylene reception system in the defense response of plants to infection with a hemibiotrophic pathogen, that causes leaf blotch disease, is discussed.  相似文献   

13.
14.
The effects of ethephon, an ethylene generating compound, and 2,5-norbornadiene (NBD), an inhibitor of ethylene action, on peroxidase (POD; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6), polyphenol oxidase (PPO; EC 1.14.18.1) activities and proline content in salt-stressed spinach leaves were investigated. POD and PPO activities were increased by NaCl + ethephon + NBD combination and reduced by NBD. Also, ethephon increased the CAT activity while ethephon + NBD reduced CAT activity. NaCl + ethephon increased proline content. The antagonistic effect of ethephon and NBD was seen on POD and PPO activity and proline accumulation, but was not on CAT activity.  相似文献   

15.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

16.
The effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements. In both leaves and roots the variations in lipid peroxidation and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, and catalase) activities of both acclimated and unacclimated plants, suggest that differences in the antioxidative enzyme activities may, at least in part, explain the increased tolerance of acclimated plants to salt stress, and that H2O2 metabolism is involved as signal in the processes of maize salt acclimation.  相似文献   

17.
Peroxidase and polyphenol oxidase activities in malformed mango inflorescences of ‘Himsagar’ and ‘Bombay green’ oultivars wore found to be increased considerably following infection byFusarium moniliforme var.subglutinans. Whether such increased activities were due to their synthesis by the pathogen or the host, or both, was not studied although it was found that the pathogen was incapable of producing the enzymesin vitro. The activities of both the enzymes in infected tissues were found to increase considerably during the experimental period. It was found that activities of polyphenol oxidase were inhibited in the presence of sodium diethyldithiocarbamate and phenylthiourea; the former acted as chelating agent of Cu of the enzymes and the latter as a competitive inhibitor. Similarly, peroxidase activity was found to be inhibited by cycloheximide which acted as inhibitor of enzyme protein synthesis. The fact that the ‘Himsagar’ cultivar showed greater enzyme activity than the ‘Bombay green’ cultivar possibly suggests its higher resistance to the pathogen.  相似文献   

18.
Jiang M  Zhang J 《Planta》2002,215(6):1022-1030
The roles of the plasma-membrane (PM) NADPH oxidase in abscisic acid (ABA)- and water stress-induced antioxidant defense were investigated in leaves of maize ( Zea mays L.) seedlings. Treatment by exogenous ABA (100 micro M ABA) or osmotic stress (-0.7 MPa induced by polyethylene glycol) significantly increased the activity of the PM NADPH oxidase, the production of leaf O(2)(-), the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), and the contents of antioxidant metabolites (ascorbate and reduced glutathione). Pretreatment with three different inhibitors of NADPH oxidase (diphenylene iodonium, imidazole and pyridine) or an inhibitor of ABA biosynthesis (tungstate) reduced the increase in the activity of the PM NADPH oxidase and the production of leaf O(2)(-), and the capacity of antioxidant defense systems mediated by ABA. The inhibitory effects above caused by tungstate were reversed by exogenous ABA. These data indicate that NADPH oxidase is involved in the ABA-induced production of active oxygen species (AOS), and our results depict a minimal chain of events initiated by water stress-induced ABA accumulation, which then triggers the production of AOS by membrane-bound NADPH oxidase, resulting in the induction of antioxidant defense systems against oxidative damage in plants.  相似文献   

19.
ALA is a key precursor in the biosynthesis of porphyrins such as chlorophyll and heme, and was found to induce temporary elevations in the photosynthesis rate, APX, and CAT; furthermore, treatment with ALA at a low concentration might be correlated to the increase of NaCl tolerance of spinach plants. The photosynthetic rate and the levels of active oxygen-scavenging system in the 3rd leaf of spinach (Spinacia oleracea) plants grown by foliar treatment with 0, 0.18, 0.60 and 1.80 mmol/L 5-aminolevulinic acid under 50 and 100 mmol/L NaCl were analyzed. Plants treated with 0.60 and 1.80 mmol/L ALA showed significant increases in the photosynthetic rate at 50 and 100 mmol/L NaCl, while that of 0.18 mmol/L ALA did not show any changes at 50 mmol/L NaCl and a gradual decrease at 100 mmol/L NaCl. In contrast, the rate with 0 mmol/L ALA showed reduction at both concentrations of NaCl. The increase of hydrogen peroxide content by treatment with 0.60 and 1.80 mmol/L ALA were more controlled than that of 0 mmol/L ALA under both NaCl conditions. These ALA-treated spinach leaves also exhibited a lower oxidized/reduced ascorbate acid ratio and a higher reduced/oxidized glutathione ratio than the 0 mmol/L-treated spinach leaves when grown at both NaCl conditions. With regard to the antioxidant enzyme activities in the leaves, ascorbate peroxidase, catalase, and glutathione reductase activities were enhanced remarkably, most notably at day 3, by treatment with 0.60 and 1.80 mmol/L ALA under both NaCl conditions in comparison to that of 0 and 0.18 mmol/L ALA. These data indicate that the protection against oxidative damage by higher levels of antioxidants and enzyme activities, and by a more active ascorbate-glutathione cycle related to the increase of the photosynthesis rate, could be involved in the increased salt tolerance observed in spinach by treatment with 0.60 to 1.80 mmol/L ALA with NaCl.  相似文献   

20.
Phosphatidic acid (PA) increases in response to wounding at the neighboring unwounded leaf as well as at the wounded leaf of many plants (Lee et al., 1997). This indicates that a signal propagates from the wounded leaf to its neighboring leaves. In this paper, we report the speed and direction of propagation for a systemic wound signal that elevates PA. When a leaf of a soybean (Glycine max) seedling at the 2-leaf-stage was wounded, the PA level of the neighboring leaf did not change within the first min, but did increase significantly in 2 min, returning to the control level after 15 min. This implies that the systemic wound signal was generated at least within 2 min of wounding, and was propagated at a speed of at least 10–16 mm/min. When we wounded individual leaves of soybean and tobacco (Nicotiana tabaccum) seedlings that had 3 or 4 leaves, PA levels were elevated only in the younger leaves located above the wounded leaf, but not in the older, lower leaves. Thus, the PA-elevating wound signal preferentially moves upward in these plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号