首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature‐ and size scaling of vital rates for the dynamics of populations experiencing warming using a stage‐structured consumer‐resource model. We show that interactive scaling alters population and stage‐specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage‐structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size–temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size–temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size‐specific temperature effects is pivotal for understanding how warming affects animal populations and communities.  相似文献   

2.
We formulate and analyze an archetypal consumer-resource model in terms of ordinary differential equations that consistently translates individual life history processes, in particular food-dependent growth in body size and stage-specific differences between juveniles and adults in resource use and mortality, to the population level. This stage-structured model is derived as an approximation to a physiologically structured population model, which accounts for a complete size-distribution of the consumer population and which is based on assumptions about the energy budget and size-dependent life history of individual consumers. The approximation ensures that under equilibrium conditions predictions of both models are completely identical. In addition we find that under non-equilibrium conditions the stage-structured model gives rise to dynamics that closely approximate the dynamics exhibited by the size-structured model, as long as adult consumers are superior foragers than juveniles with a higher mass-specific ingestion rate. When the mass-specific intake rate of juvenile consumers is higher, the size-structured model exhibits single-generation cycles, in which a single cohort of consumers dominates population dynamics throughout its life time and the population composition varies over time between a dominance by juveniles and adults, respectively. The stage-structured model does not capture these dynamics because it incorporates a distributed time delay between the birth and maturation of an individual organism in contrast to the size-structured model, in which maturation is a discrete event in individual life history. We investigate model dynamics with both semi-chemostat and logistic resource growth.  相似文献   

3.
We present a quasilinear size-structured model which describes the dynamics of a population with n competing ecotypes. We assume that the vital rates of each subpopulation depend on the total population due to competition. We provide conditions on the individual rates which guarantee competitive exclusion in the case of closed reproduction (offspring always belongs to the same ecotype as the parent). In particular, our results suggest that the ratio of the reproduction and mortality rates is a good measure to determine the winning ecotype. Meanwhile, we show that in the case of open reproduction all ecotypes coexist.  相似文献   

4.
Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots that were less shaded by the tree canopy, indicating an environmentally determined carrying capacity. A size-structured integral projection model based on the vital rate regressions revealed that the identified effects of shade and density were strong enough to produce differences in stable population sizes similar to those observed in the field. The results illustrate how the local environment can determine dynamics of populations and that intraspecific density may have to be more carefully considered in studies of plant demography and population viability analyses of threatened species. We conclude that demographic approaches incorporating information about both density and key environmental factors are powerful tools for understanding the processes that interact to determine population dynamics and abundances.  相似文献   

5.
Many animal species live in groups. Group living may increase exploitation competition within the group, and variation among groups in intra-group competition intensity could induce life-history variability among groups. Models of physiologically structured populations generally predict single generation cycles, driven by exploitation competition within and between generations. We expect that life-history variability and habitat heterogeneity induced by group living may affect such competition-driven population dynamics. In this study, we vary the gregariousness (the tendency to aggregate in groups) of a size-structured consumer population in a spatially explicit environment. The consumer has limited mobility, and moves according to a probabilistic movement process. We study the effects on the population dynamics, as mediated through the resource and the life-history of the consumer. We find that high gregariousness leads to large spatial resource variation, and highly variable individual life-history, resulting in highly stochastic population dynamics. At reduced gregariousness, life-history of consumers synchronizes, habitat heterogeneity is reduced, and single generation cycles appear. We expect this pattern to occur for any group living organism with limited mobility. Our results indicate that constraints set by population dynamical feedback may be an important aspect in understanding group living in nature.  相似文献   

6.
For the majority of species, per capita growth rate correlates negatively with population density. Although the popular logistic equation for the growth of a single species incorporates this intraspecific competition, multi-trophic models often ignore self-limitation of the consumers. Instead, these models often assume that the predator-prey interactions are purely exploitative, employing simple Lotka-Volterra forms in which consumer species lack intraspecific competition terms. Here we show that intraspecific interference competition can account for the stable coexistence of many consumer species on a single resource in a homogeneous environment. In addition, our work suggests a potential mechanism for field observations demonstrating that habitat area and resource productivity strongly positively correlate to biodiversity. In the special case of a modified Lotka-Volterra model describing multiple predators competing for a single resource, we present an ordering procedure that determines the deterministic fate of each specific consumer. Moreover, we find that the growth rate of a resource species is proportional to the maximum number of consumer species that resource can support. In the limiting case, when the resource growth rate is infinite, a model with intraspecific interference reduces to the conventional Lotka-Volterra competition model where there can be an unlimited number of coexisting consumers. This highlights the crucial role that resource growth rates may play in promoting coexistence of consumer species.  相似文献   

7.
A ubiquitous feature of natural communities is the variation in size that can be observed between organisms, a variation that to a substantial degree is intraspecific. Size variation within species by necessity implies that ecological interactions vary both in intensity and type over the life cycle of an individual. Physiologically structured population models (PSPMs) constitute a modelling approach especially designed to analyse these size‐dependent interactions as they explicitly link individual level processes such as consumption and growth to population dynamics. We discuss two cases where PSPMs have been used to analyse the dynamics of size‐structured populations. In the first case, a model of a size‐structured consumer population feeding on a non‐structured prey was successful in predicting both qualitative (mechanisms) and quantitative (individual growth, survival, cycle amplitude) aspects of the population dynamics of a planktivorous fish population. We conclude that single generation cycles as a result of intercohort competition is a general outcome of size‐structured consumer–resource interactions. In the second case, involving both cohort competition and cannibalism, we show that PSPMs may predict double asymptotic growth trajectories with individuals ending up as giants. These growth trajectories, which have also been observed in field data, could not be predicted from individual level information, but are emergent properties of the population feedback on individual processes. In contrast to the size‐structured consumer–resource model, the dynamics in this case cannot be reduced to simpler lumped stage‐based models, but can only be analysed within the domain of PSPMs. Parameter values used in PSPMs adhere to the individual level and are derived independently from the system at focus, whereas model predictions involve both population level processes and individual level processes under conditions of population feedback. This leads to an increased ability to test model predictions but also to a larger set of variables that is predicted at both the individual and population level. The results turn out to be relatively robust to specific model assumptions and thus render a higher degree of generality than purely individual‐based models. At the same time, PSPMs offer a much higher degree of realism, precision and testing ability than lumped stage‐based or non‐structured models. The results of our analyses so far suggest that also in more complex species configurations only a limited set of mechanisms determines the dynamics of PSPMs. We therefore conclude that there is a high potential for developing an individual‐based, size‐dependent community theory using PSPMs.  相似文献   

8.
Resource polymorphism is a well-known phenomenon in many taxa, assumed to be a consequence of strong competition for resources and to be facilitated by stable environments and the presence of several profitable resources on which to specialize. In fish, resource polymorphism, in the form of planktivore-benthivore pairs, is found in a number of species. We gathered literature data on life-history characteristics and population dynamics for 15 fish species and investigated factors related to the presence of such resource polymorphism. This investigation indicated that early cannibalism and low overall population variability are typically associated with the presence of resource polymorphism. These findings match previously reported patterns of population dynamics for size-structured fish populations, whereby early cannibalism has been shown to decrease temporal variation in population dynamics and to equalize the profitability of the zooplankton and macroinvertebrate resources. Our study suggests that competition alone is not a sufficient condition for the development of resource polymorphism because overly strong competition is typically associated with increased temporal variation (environmental instability). We conclude that although resource competition is an important factor regulating the development of resource polymorphism, cannibalism may also play a fundamental role by dampening population oscillations and possibly by equalizing the profitability of different resources.  相似文献   

9.
The majority of taxa grow significantly during life history, which often leads to individuals of the same species having different ecological roles, depending on their size or life stage. One aspect of life history that changes during ontogeny is mortality. When individual growth and development are resource dependent, changes in mortality can affect the outcome of size-dependent intraspecific resource competition, in turn affecting both life history and population dynamics. We study the outcome of varying size-dependent mortality on two life-history types, one that feeds on the same resource throughout life history and another that can alternatively cannibalize smaller conspecifics. Compensatory responses in the life history dampen the effect of certain types of size-dependent mortality, while other types of mortality lead to dramatic changes in life history and population dynamics, including population (de-)stabilization, and the growth of cannibalistic giants. These responses differ strongly among the two life-history types. Our analysis provides a mechanistic understanding of the population-level effects that come about through the interaction between individual growth and size-dependent mortality, mediated by resource dependence in individual vital rates.  相似文献   

10.
It is predicted that warmer conditions should lead to a loss of trophic levels, as larger bodied consumers, which occupy higher trophic levels, experience higher metabolic costs at high temperature. Yet, it is unclear whether this prediction is consistent with the effect of warming on the trophic structure of natural systems. Furthermore, effects of temperature at the species level, which arise through a change in species composition, may differ from those at the population level, which arise through a change in population structure. We investigate this by building species-level trophic networks, and size-structured trophic networks, as a proxy for population structure, for 18 648 stream fish communities, from 4 145 234 individual fish samples, across 7024 stream locations in France from 1980 to 2008. We estimated effects of temperature on total trophic diversity (total number of nodes), vertical trophic diversity (mean and maximum trophic level) and distribution of biomass across trophic level (correlation between trophic level and biomass) in these networks. We found a positive effect of temperature on total trophic diversity in both species- and size-structured trophic networks. We found that maximum trophic level and biomass distribution decreased in species-level and size-structured trophic networks, but the mean trophic level decreased only in size-structured trophic networks. These results show that warmer temperatures associate with a lower vertical trophic diversity in size-structured networks, and a higher one in species-level networks. This suggests that vertical trophic diversity is shaped by antagonistic effects of temperature on population structure and on species composition. Our results hence demonstrate that effects of temperature do not only differ across trophic levels, but also across levels of biological organisation, from population to species level, implying complex changes in network structure and functioning with warming.  相似文献   

11.
Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual‐based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals’ energy budgets. We quantified, in different warming scenarios (+1–+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for assessing and monitoring impacts of chemicals on ecosystems facing global warming. We advise complementing existing monitoring approaches with directly quantifying ecosystem processes and services.  相似文献   

12.
This article analyzes the classical 2-resource-1-consumer apparent competition community module with the Holling type II functional response. Two types of resource regulation (top-down vs. combined top-down and bottom-up) and two types of consumer behaviors (inflexible consumers with fixed preferences for resources vs. adaptive consumers) are considered. When resources grow exponentially and consumers are inflexible foragers, one resource is always outcompeted due to strong apparent competition. Density dependent resource growth relaxes apparent competition so that resources can coexist. As multiple attractors (either equilibria or limit cycles) coexist, population dynamics and community composition depend on initial population densities. Population dynamics change dramatically when consumers forage adaptively. In this case, the results both for top-down, and combined top-down and bottom-up regulation are similar and they show that species persistence occurs for a much larger set of parameter values when compared with inflexible consumers. Moreover, population dynamics will be chaotic when resource carrying capacities are high enough. This shows that adaptive consumer switching can destabilize population dynamics.  相似文献   

13.
Cannibals and their victims often share common resources and thus potentially compete. Smaller individuals are often competitively superior to larger ones because of size-dependent scaling of foraging and metabolic rates, while larger ones may use cannibalism to counter this competition. We study the interplay between cannibalism and competition using a size-structured population model in which all individuals consume a shared resource but in which larger ones may cannibalize smaller conspecifics. In this model, intercohort competition causes single-cohort cycles when cannibalism is absent. Moderate levels of cannibalism reduce intercohort competition, enabling coexistence of many cohorts. More voracious cannibalism, in combination with competition, produces large-amplitude cycles and a bimodal population size distribution with many small and few giant individuals. These coexisting "dwarfs" and "giants" have very different life histories, resulting from a reversal in importance of cannibalism and competition. The population structure at time of birth determines whether individuals suffer severe cannibalism, with the few survivors reaching giant sizes, or whether they suffer intense intracohort competition, with all individuals remaining small. These model results agree remarkably well with empirical data on perch population dynamics. We argue that the induction of cannibalistic giants in piscivorous fish is a population-dynamic emergent phenomenon that requires a combination of size-dependent cannibalism and competition.  相似文献   

14.
1.?Model analyses show that the stability of population dynamics and food web persistence increase with the strength of interference competition. Despite this critical importance for community stability, little is known about how external factors such as the environmental temperature affect intraspecific interference competition. 2.?We aimed to fill this void by studying the functional responses of two ground beetle species of different body size, Pterostichus melanarius and Poecilus versicolor. These functional response experiments were replicated across four predator densities and two temperatures to address the impact of temperature on intraspecific interference competition. 3.?We generally expected that warming should increase the speed of movement, encounter rates and in consequence interference among predator individuals. In our experiment, this expectation was supported by the results obtained for the larger predator, P.?melanarius, whereas the opposite pattern characterized the interference behaviour of the smaller predator P.?versicolor. 4.?These results suggest potentially nontrivial implications for the effects of environmental temperature on intraspecific interference competition, for which we propose an explanation based on the different sensitivity to warming of metabolic rates of both species. As expected, increasing temperature led to stronger interference competition of the larger species, P.?melanarius, which exhibited a weaker increase in metabolic rate with increasing temperature. The stronger increase in the metabolic rate of the smaller predator, P.?versicolor, had to be compensated by increasing searching activity for prey, which did not leave time for increasing interference. 5.?Together, these results suggest that any generalization how interference competition responds to warming should also take the species' metabolic response to temperature increases into account.  相似文献   

15.
If we intend to examine the indirect effects of climate variabilityon the vital rates of key marine species, climate-induced changesin the spatial-temporal dynamics of prey must be resolved. Recently,structured population simulations have been coupled to ecosystem(nutrient-phytoplankton-zooplankton-detritus, NPZD) models toderive prey fields. Model-derived prey fields offer advantages(e.g. increased spatial-temporal coverage, direct links to climateforcing). In contrast, employing structured population simulations(e.g. stage-based copepod models) has several disadvantages,including the lack of realistic utilization of phytoplanktonproduction, the absence of boundary condition data and a vastlyincreased coupled model complexity. To avoid the pitfalls limitingthe utility of structured population models, we argue for amore simple approach for obtaining a size-structured prey fieldusing NPZD model estimates of bulk zooplankton carbon and insitu zooplankton abundance-at-size data. The approach was developedto obtain prey fields for a larval fish individual-based model(IBM), but the method may offer wide applicability. Moreover,our approach greatly simplifies the coupling of NPZD modelsand larval fish IBMs and is an example of the reduction in modelcomplexity that will be critical to the development of end-to-endecosystem models that use, for example, a rhomboid approachto examine trophodynamic climate impacts at basin scales.  相似文献   

16.
1. Current formulations of functional responses assume that the prey is homogeneous and independent of intraspecific processes. Most prey populations consist of different coexisting size classes that often engage in asymmetrical intraspecific interactions, including cannibalism, which can lead to nonlinear interaction effects. This may be important as the size structure with the prey could alter the overall density-dependent predation rates. 2. In a field experiment with damselfly and dragonfly larvae, 16 treatments manipulated the density of a small prey stage, the presence of large conspecific prey and the presence of heterospecific predators. 3. Size structure in the prey (i.e. when both prey stages were present) decreased the impact of the predator on overall prey mortality by 25-48% at mid and high prey densities, possibly due to density-dependent size-structured cannibalism in the prey. The predation rates on small prey stages were determined by the interaction of large prey and predators. Predation rates increased with prey density in the absence of large prey, but predation rates were constant across densities when large conspecifics were present. 4. The functional response for unstructured prey followed a Holling type III model, but the predation rate for size-structured prey was completely different and followed a complex pattern that could not be explained with any standard functional response. 5. Using additional laboratory experiments, a mortality model was developed and parameterized. It showed that the overall prey mortality of size-structured prey can be adequately predicted with a composite functional response model that modelled the individual functional responses of each prey stage separately and accounted for their cannibalistic interaction. 6. Thus, treating a prey population as a homogeneous entity will lead to erroneous predictions in most real-world food webs. However, if we account for the effects of size structure and the intraspecific interactions on functional responses by treating size classes as different functional groups, it is possible to reliably predict the dynamics of size-structured predator-prey systems.  相似文献   

17.
Rising temperatures associated with global warming present a challenge to the fate of many aquatic organisms. Although rapid evolutionary response to temperature-mediated selection may allow local persistence of populations under global warming, and therefore is a key aspect of evolutionary biology, solid proof of its occurrence is rare. In this study, we tested for genetic adaptation to an increase in temperature in the water flea Daphnia magna , a keystone species in freshwater systems, by performing a thermal selection experiment under laboratory conditions followed by the quantification of microevolutionary responses to temperature for both life-history traits as well as for intraspecific competitive strength. After three months of selection, we found a microevolutionary response to temperature in performance, but only in one of two culling regimes, highlighting the importance of population dynamics in driving microevolutionary change within populations. Furthermore, there was an evolutionary increase in thermal plasticity in performance. The results of the competition experiment were in agreement with predictions based on performance as quantified in the life table experiment and illustrate that microevolution within a short time frame has the ability to influence the outcome of intraspecific competition.  相似文献   

18.
Paul Glaum  John Vandermeer 《Oikos》2021,130(7):1116-1130
Demographic heterogeneity influences how populations respond to density dependent intraspecific competition and trophic interactions. Distinct stages across an organism's development, or ontogeny, are an important example of demographic heterogeneity. In consumer populations, ontogenetic stage structure has been shown to produce categorical differences in population dynamics, community dynamics and even species coexistence compared to models lacking explicit ontogeny. The study of consumer–resource interactions must also consider the ontogenetic stage structure of the resource itself, particularly plants, given their fundamental role at the basis of terrestrial food webs. We incorporate distinct ontogenetic stages of plants into an adaptable multi-stage consumer–resource modeling framework that facilitates studying how stage specific consumers shape trophic dynamics at low trophic levels. We describe the role of density dependent demographic rates in mediating the dynamics of stage-structured plant populations. We then investigate how these demographic rates interact with consumer pressure to influence stability and coexistence in multiple stage-specific consumer–resource interactions. Results detail how density dependent effects across distinct ontogenetic stages in plant development produce non-additivity in the drivers of dynamic stability both in single populations and in consumer–resource settings, challenging the ubiquity of certain traditional ecological dynamic paradigms. We also find categorical differences in the population variability induced by herbivores consuming separate plant stages. Consumer–resource models, such as plant–herbivore interactions, often average out demographic heterogeneity in populations. Here, we show that explicitly including plant demographic heterogeneity through ontogeny yields distinct dynamic expectations for both plants and herbivores compared to traditional consumer–resource formulations. Our results indicate that efforts to understand the demographic effect of herbivores on plant populations may need to also consider the effects of plant demographics on herbivores and the reciprocal relationship between them.  相似文献   

19.
Growth in body size during ontogeny often results in changes in diet, leading to life-history omnivory. In addition, growth is often dependent on food density. Using a physiologically structured population model, we investigated the effects of these two aspects of individual growth in a system consisting of two size-structured populations, an omnivorous top predator and an intermediate consumer. With a single shared resource for both populations, we found that life-history omnivory decreases the likelihood of coexistence between top predator and intermediate consumer in this intraguild predation (IGP) system. This result contrasts with previous unstructured models and stage-structured models without food-dependent development. Food-dependent development and size-dependent foraging abilities of the predator resulted in a positive feedback between foraging success on the shared resource at an early life stage and foraging success on the intermediate consumer later in life. By phenomenologically incorporating this feedback in an unstructured IGP model, we show that it also demotes coexistence in this simple setting, demonstrating the robustness of the negative effect of this feedback.  相似文献   

20.
Current competition theory does not adequately address the fact that competitors may affect the survival, growth, and reproductive rates of their resources. Ecologically important interactions in which consumers affect resource vital rates range from parasitism and herbivory to mutualism. We present a general model of competition that explicitly includes consumer-dependent resource vital rates. We build on the classic MacArthur model of competition for multiple resources, allowing direct comparison with expectations from established concepts of resource-use overlap. Consumers share a stage-structured resource population but may use the different stages to different extents, as they do the different independent resources in the classic model. Here, however, the stages are dynamically linked via consumer-dependent vital rates. We show that consumers' effects on resource vital rates result in two important departures from classic results. First, consumers can coexist despite identical use of resource stages, provided each competitor shifts the resource stage distribution toward stages that benefit other species. Second, consumers specializing on different resource stages can compete strongly, possibly resulting in competitive exclusion despite a lack of resource stage-use overlap. Our model framework demonstrates the critical role that consumer-dependent resource vital rates can play in competitive dynamics in a wide range of biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号