首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In congestive heart failure (CHF), diaphragm weakness is known to occur and is associated with myosin loss and activation of the ubiquitin-proteasome pathway. The effect of modulating proteasome activity on myosin loss and diaphragm function is unknown. The present study investigated the effect of in vivo proteasome inhibition on myosin loss and diaphragm function in CHF rats. Coronary artery ligation was used as an animal model for CHF. Sham-operated rats served as controls. Animals were treated with the proteasome inhibitor bortezomib (intravenously) or received saline (0.9%) injections. Force generating capacity, cross-bridge cycling kinetics, and myosin content were measured in diaphragm single fibers. Proteasome activity, caspase-3 activity, and MuRF-1 and MAFbx mRNA levels were determined in diaphragm homogenates. Proteasome activities in the diaphragm were significantly reduced by bortezomib. Bortezomib treatment significantly improved diaphragm single fiber force generating capacity (approximately 30-40%) and cross-bridge cycling kinetics (approximately 20%) in CHF. Myosin content was approximately 30% higher in diaphragm fibers from bortezomib-treated CHF rats than saline. Caspase-3 activity was decreased in diaphragm homogenates from bortezomib-treated rats. CHF increased MuRF-1 and MAFbx mRNA expression in the diaphragm, and bortezomib treatment diminished this rise. The present study demonstrates that treatment with a clinically used proteasome inhibitor improves diaphragm function by restoring myosin content in CHF.  相似文献   

3.
Recent studies proposed that mechanical inactivity of the human diaphragm during mechanical ventilation rapidly causes diaphragm atrophy and weakness. However, conclusive evidence for the notion that diaphragm weakness is a direct consequence of mechanical inactivity is lacking. To study the effect of hemidiaphragm paralysis on diaphragm muscle fiber function and structure in humans, biopsies were obtained from the paralyzed hemidiaphragm in eight patients with hemidiaphragm paralysis. All patients had unilateral paralysis of known duration, caused by en bloc resection of the phrenic nerve with a tumor. Furthermore, diaphragm biopsies were obtained from three control subjects. The contractile performance of demembranated muscle fibers was determined, as well as fiber ultrastructure and morphology. Finally, expression of E3 ligases and proteasome activity was determined to evaluate activation of the ubiquitin-proteasome pathway. The force-generating capacity, as well as myofibrillar ultrastructure, of diaphragm muscle fibers was preserved up to 8 wk of paralysis. The cross-sectional area of slow fibers was reduced after 2 wk of paralysis; that of fast fibers was preserved up to 8 wk. The expression of the E3 ligases MAFbx and MuRF-1 and proteasome activity was not significantly upregulated in diaphragm fibers following paralysis, not even after 72 and 88 wk of paralysis, at which time marked atrophy of slow and fast diaphragm fibers had occurred. Diaphragm muscle fiber atrophy and weakness following hemidiaphragm paralysis develops slowly and takes months to occur.  相似文献   

4.
Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD.  相似文献   

5.
Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD.  相似文献   

6.
Diaphragm weakness commonly occurs in patients with congestive heart failure (CHF) and is an independent predictor of mortality. However, the pathophysiology of diaphragm weakness is poorly understood. We hypothesized that CHF induces diaphragm weakness at the single-fiber level by decreasing myosin content. In addition, we hypothesized that myofibrillar Ca(2+) sensitivity is decreased and cross-bridge kinetics are slower in CHF diaphragm fibers. Finally, we hypothesized that loss of myosin in CHF diaphragm weakness is associated with increased proteolytic activities of caspase-3 and the proteasome. In skinned diaphragm single fibers of rats with CHF, induced by left coronary artery ligation, maximum force generation was reduced by approximately 35% (P < 0.01) compared with sham-operated animals for slow, 2a, and 2x fibers. In these CHF diaphragm fibers, myosin heavy chain content per half-sarcomere was concomitantly decreased (P < 0.01). Ca(2+) sensitivity of force generation and the rate constant of tension redevelopment were significantly reduced in CHF diaphragm fibers compared with sham-operated animals for all fiber types. The cleavage activity of the proteolytic enzyme caspase-3 and the proteasome were approximately 30% (P < 0.05) and approximately 60% (P < 0.05) higher, respectively, in diaphragm homogenates from CHF rats than from sham-operated rats. The present study demonstrates diaphragm weakness at the single-fiber level in a myocardial infarct model of CHF. The reduced maximal force generation can be explained by a loss of myosin content in all fiber types and is associated with activation of caspase-3 and the proteasome. Furthermore, CHF decreases myofibrillar Ca(2+) sensitivity and slows cross-bridge cycling kinetics in diaphragm fibers.  相似文献   

7.
Costal strips of diaphragmatic muscle obtained from animals with elastase-induced emphysema generate maximum tension at significantly shorter muscle fiber lengths than muscle strips from control animals. The present study examined the consequences of alterations in the length-tension relationship assessed in vitro on the pressure generated by the diaphragm in vivo. Transdiaphragmatic pressure (Pdi) and functional residual capacity (FRC) were measured in 22 emphysematous and 22 control hamsters 4-5 mo after intratracheal injection of pancreatic elastase or saline, respectively. In 12 emphysematous and 12 control hamsters Pdi was also measured during spontaneous contractions against an occluded airway. To allow greater control over muscle excitation, Pdi was measured during bilateral tetanic (50 Hz) electrical stimulation of the phrenic nerves in 10 emphysematous and 10 control hamsters. Mean FRC in the emphysematous hamsters was 183% of the value in control hamsters (P less than 0.01). During spontaneous inspiratory efforts against a closed airway the highest Pdi generated at FRC tended to be greater in control than emphysematous hamsters. When control hamsters were inflated to a lung volume approximating the FRC of emphysematous animals, however, peak Pdi was significantly greater in emphysematous animals (70 +/- 6 and 41 +/- 8 cmH2O; P less than 0.05). With electrophrenic stimulation, the Pdi-lung volume curve was shifted toward higher lung volumes in emphysematous hamsters. Pdi at all absolute lung volumes at and above the FRC of emphysematous hamsters was significantly greater in emphysematous compared with control animals. Moreover, Pdi continued to be generated by emphysematous hamsters at levels of lung volume where Pdi of control subjects was zero.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of thepresent study was to investigate the effect of chronic long-termclenbuterol treatment (1 mg/kg subcutaneously twice a day for 12 wk) ondiaphragm morphology and function in emphysematous (EH) and normalhamsters (NH). Clenbuterol increased body weight, diaphragm weight, andskeletal muscle weight in both EH and NH to a similarextent. In the diaphragm, clenbuterol significantly increased myosin heavy chain type I, IIa, and IIx muscle fiber cross-sectional areas by ~35-55% in both EH and NH. Thisresponse to clenbuterol treatment was not significantly differentbetween EH and NH diaphragm. In EH, twitch force(Pt), maximal tetanic force, andforce-frequency curve were significantly reduced compared with NH. InEH, clenbuterol increased Pt by~10%, restoring Pt to NH level.A similar improvement was observed in the force-frequency characteristics. Clenbuterol did not alter contractile properties inNH. In conclusion, long-term clenbuterol treatment resulted in anincreased size of all diaphragm muscle fiber types in both NH and EH.Clenbuterol completely abolished the reduced force generation inducedby emphysema.

  相似文献   

9.
The present study examined the intrinsic contractile properties and endurance of the transverse abdominis and external oblique abdominal expiratory muscles in adult hamsters and compared their performance with the diaphragm. Experiments were performed in vitro on isolated bundles of muscle stimulated electrically. In control animals peak twitch tension was similar in the two muscles. In contrast, the twitch contraction time and one-half relaxation time of the transverse abdominis were significantly greater than that of the external oblique. The isometric tension generated over a range of stimulus frequencies (i.e., the force-frequency relationship) was a greater percent of the maximum value in response to subtetanizing frequencies (10-40 Hz) in the transverse abdominis than in the external oblique. For both abdominal muscles, however, the tension generated over this range of stimulus frequencies was less than that of the diaphragm. The endurance of the transverse abdominis during repeated contractions was significantly greater than that of the external oblique but similar to the diaphragm. The effect of chronic hyperinflation produced by elastase-induced emphysema on the contractile function of the two muscles was assessed in a second group of adult hamsters. In emphysematous animals peak twitch tension, contraction time, and one-half relaxation time of the twitch and force-frequency curves of muscles from emphysematous animals were similar to values obtained in control animals for both the external oblique and transverse abdominis. However, the endurance of both the transverse abdominis and external oblique muscles was greater in emphysematous than control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Duchenne muscular dystrophy is characterized by myofiber necrosis, muscle replacement by connective tissue, and crippling weakness. Although the mdx mouse also lacks dystrophin, most muscles show little myofiber loss or functional impairment. An exception is the mdx diaphragm, which is phenotypically similar to the human disease. Here we tested the hypothesis that the mdx diaphragm has a defective regenerative response to necrotic injury, which could account for its severe phenotype. Massive necrosis was induced in mdx and wild-type (C57BL10) mouse diaphragms in vivo by topical application of notexin, which destroys mature myofibers while leaving myogenic precursor satellite cells intact. At 4 h after acute exposure to notexin, >90% of diaphragm myofibers in both wild-type and mdx mice demonstrated pathological sarcolemmal leakiness, and there was a complete loss of isometric force-generating capacity. Both groups of mice showed strong expression of embryonic myosin within the diaphragm at 5 days, which was largely extinguished by 20 days after injury. At 60 days postinjury, wild-type diaphragms exhibited a persistent loss ( approximately 25%) of isometric force-generating capacity, associated with a trend toward increased connective tissue infiltration. In contrast, mdx diaphragms achieved complete functional recovery of force generation to noninjured values, and there was no increase in muscle connective tissue over baseline. These data argue against any loss of intrinsic regenerative capacity within the mdx diaphragm, despite characteristic features of major dystrophic pathology being present. Our findings support the concept that significant latent regenerative capacity resides within dystrophic muscles, which could potentially be exploited for therapeutic purposes.  相似文献   

11.
Loading of skeletal muscles is associated with increased generation of oxidants, which in turn may impair muscle contractility. We investigated whether the load on the hamster diaphragm imposed by pulmonary emphysema induces oxidative stress, as indicated by glutathione oxidation, and whether the degree of glutathione oxidation is correlated with contractility of the diaphragm. In addition, the effect of 12 wk of treadmill exercise training on contractility and glutathione content in the normal (NH) and emphysematous hamster (EH) diaphragm was investigated. Training started 6 mo after elastase instillation. After the training period, glutathione content and in vitro contractility of the diaphragm were determined. Twitch force and maximal tetanic force were significantly reduced (by approximately 30 and approximately 15%, respectively) in EH compared with NH. In sedentary hamsters, the GSSG-to-GSH ratio was significantly elevated in the EH compared with the NH diaphragm. A significant inverse correlation was found between GSSG-to-GSH ratio and twitch force in the diaphragm (P < 0. 01). Training improved maximal tetanic force and reduced fatigability of the EH diaphragm but did not alter its glutathione content. In conclusion, 1) emphysema induces oxidative stress in the diaphragm, 2) training improves the contractile properties of the EH diaphragm, and 3) this improvement is not accompanied by changes in glutathione redox status.  相似文献   

12.
The present study examined the effects of elastase-induced emphysema on the structure of the external oblique and transverse abdominis muscles and a non-respiratory muscle, the extensor digitorum longus. Muscle structure was assessed from the cross-sectional area (CSA) and percent of individual fiber types in histochemically stained sections and from the number of sarcomeres arranged in series along the length of individual fibers. Data were obtained in eight hamsters with emphysema and nine saline-injected controls. In the normal (control) animals the external oblique was thicker but contained fewer sarcomeres than the transverse abdominis. Fiber size was similar in the two muscles. In the transverse abdominis the percents of fast-glycolytic and fast-oxidative fibers were greater and smaller, respectively, than in the external oblique. Lung volume of emphysematous hamsters was 168% of control values (P less than 0.001). In emphysematous compared with control animals, the CSA of fast-twitch fibers in the external oblique and transverse abdominis was significantly reduced. Fiber length and sarcomere number were significantly decreased in the transverse abdominis but not in the external oblique in emphysematous hamsters. In contrast, fiber size and composition of the extensor digitorum longus was similar in emphysematous and control animals. These data indicate that cellular responses of the ventilatory muscles to chronic hyperinflation and altered thoracic geometry induced by emphysema are not present in limb skeletal muscle. We speculate that changes in fiber length and CSA of fast fibers in the abdominal expiratory muscles reflect responses to chronic alterations in the mechanics of breathing that may affect muscle load, length, or the pattern of activity.  相似文献   

13.
A complex rearrangement mutation in the mouse titin gene leads to an in-frame 83-amino acid deletion in the N2A region of titin. Autosomal recessive inheritance of the titin muscular dystrophy with myositis (Ttn(mdm/mdm)) mutation leads to a severe early-onset muscular dystrophy and premature death. We hypothesized that the N2A deletion would negatively impact the force-generating capacity and passive mechanical properties of the mdm diaphragm. We measured in vitro active isometric contractile and passive length-tension properties to assess muscle function at 2 and 6 wk of age. Micro-CT, myosin heavy chain Western blotting, and histology were used to assess diaphragm structure. Marked chest wall distortions began at 2 wk and progressively worsened until 5 wk. The percentage of myofibers with centrally located nuclei in mdm mice was significantly (P < 0.01) increased at 2 and 6 wk by 4% and 17%, respectively, compared with controls. At 6 wk, mdm diaphragm twitch stress was significantly (P < 0.01) reduced by 71%, time to peak twitch was significantly (P < 0.05) reduced by 52%, and half-relaxation time was significantly (P < 0.05) reduced by 57%. Isometric tetanic stress was significantly (P < 0.05) depressed in 2- and 6-wk mdm diaphragms by as much as 64%. Length-tension relationships of the 2- and 6-wk mdm diaphragms showed significantly (P < 0.05) decreased extensibility and increased stiffness. Slow myosin heavy chain expression was aberrantly favored in the mdm diaphragm at 6 wk. Our data strongly support early contractile and passive mechanical aberrations of the respiratory pump in mdm mice.  相似文献   

14.
Previously administration of thyroxine (T4) to dystrophic hamsters improved ventilation and slowed the progression of the disease. We hypothesized that the normalization of ventilation in these animals was due to T4 improving structural and functional characteristics of the diaphragm. In the present study, contractile characteristics of the diaphragm and the extensor digitorum longus (EDL) from normal and dystrophic hamsters were evaluated after two months of T4 treatment. Compared to their placebo-treated counterparts, diaphragms and EDLs of T4-treated normal hamsters showed increased optimal muscle lengths and twitch tension, decreased contraction times and increased fatigability. T4-treatment in dystrophic hamsters showed only an increase in diaphragmatic twitch tension development. Force-frequency curves before treatment were generally higher for the normal compared to dystrophic diaphragms and EDLs. T4 administration only increased the force in normal diaphragms at the lower frequencies and in the EDLs at the higher frequencies. Although T4 serum levels were increased in both T4-treated groups, triiodothyronine (T3) was much lower in the dystrophic compared to normal hamsters, suggesting that conversion of T4 to T3 was reduced in dystrophic hamsters. We conclude that the limited functional changes in the diaphragms of T4-treated dystrophic hamsters cannot account for the marked improvement in ventilation previously reported.  相似文献   

15.
Alpha-sarcoglycan (ASG) is a transmembrane protein of the dystrophin-associated complex, and absence of ASG causes limb-girdle muscular dystrophy. We hypothesize that disruption of the sarcoglycan complex may alter muscle extensibility and disrupt the coupling between passive transverse and axial contractile elements in the diaphragm. We determined the length-tension relationships of the diaphragm of young ASG-deficient mice and their controls during uniaxial and biaxial loading. We also determined the isometric contractile properties of the diaphragm muscles from mutant and normal mice in the absence and presence of passive transverse stress. We found that the diaphragm muscles of the null mutants for the protein ASG show 1) significant decrease in muscle extensibility in the directions of the muscle fibers and transverse to fibers, 2) significant reductions in force-generating capacity, and 3) significant reductions in coupling between longitudinal and transverse properties. Thus these findings suggest that the sarcoglycan complex serves a mechanical function in the diaphragm by contributing to muscle passive stiffness and to the modulation of the contractile properties of the muscle.  相似文献   

16.
Changes in pulmonary hemodynamics and vascular reactivity in emphysematous hamsters were studied in an isolated lung preparation perfused at constant flow with blood and 3% dextran. Hamsters were treated with intratracheal porcine pancreatic elastase at 70 days of age, and experimental studies were conducted at 1, 3, and 8 mo after treatment. Baseline pulmonary arterial pressure in elastase-treated lungs was increased compared with saline-treated control lungs 1 mo after treatment, but this increase did not progress at 3 and 8 mo. Increases in pulmonary arterial pressure in elastase-treated lungs were temporally correlated with the morphological development of emphysema and right ventricular hypertrophy; both of these were evident at 1 mo after treatment and showed little change thereafter. Pressor responses to hypoxia and angiotensin II were not different between elastase-treated and control lungs at 1 and 3 mo. At 8 mo, however, pressor responses in emphysematous lungs to 0% O2 (but not to angiotensin II) were significantly increased. This was the result of a lack of the normal age-related fall in the hypoxic pressor response. Our results suggest that the right ventricular hypertrophy found in these emphysematous animals results from a chronically increased pulmonary vascular resistance. Furthermore, increases in pulmonary vascular resistance in the early development of emphysema are likely a result of the loss of vascular beds and supporting connective tissue.  相似文献   

17.
The current pilot study examined the hypothesis that cigarette smokers who developed an emphysematous phenotype of Chronic Obstructive Pulmonary Disease (COPD) were associated with distinctive patterns in their corresponding metabolomics profile as compared to those who did not. Peripheral blood plasma samples were collected from 38 subjects with different phenotypes of COPD. They were categorized into three groups: healthy non-smokers (n = 16), smokers without emphysema (n = 8), and smokers with emphysema (n = 14). Ultra High Performance Liquid Chromatography/quadrupole-Time-of-Flight Mass Spectrometry techniques were used to identify a large number of metabolite markers (3534). Unsupervised clustering analysis accurately separated the smokers with emphysema from others without emphysema and demonstrated potentials of this metabolomics data. Subsequently predictive models were created with a supervised learning set, and these predictive models were found to be highly accurate in identifying the subjects with the emphysematous phenotype of COPD with excellent sensitivity and specificity. Our methodology provides a preliminary model that differentiates an emphysematous COPD phenotype from other COPD phenotypes on the basis of the metabolomics profiles. These results also suggest that the metabolomics profiling could potentially guide the characterization of relevant metabolites that leads to an emphysematous COPD phenotype.  相似文献   

18.
The present study examined the active and passive length-tension relationship of the abdominal expiratory muscles in vitro during electrically stimulated contractions. Studies were performed on isolated strips of transverse abdominis and external oblique muscle from nine adult hamsters with normal lung function. The effect of chronic hyperinflation on the two muscles was assessed in eight hamsters with elastase-induced emphysema. In normal animals the maximal active tension per cross-sectional area (Po) was equal in the two muscles. The absolute muscle fiber length at which Po occurred (Lo) was less for the external oblique than the transverse abdominis and the length-tension curve operated at shorter fiber lengths. However, the change in tension produced by an increase or decrease in muscle length expressed in relative terms (i.e., as %Lo) was greater for the transverse abdominis than the external oblique. Mean total lung capacity of emphysematous animals was 198% of control. Po of the transverse abdominis and external oblique were the same in emphysematous and control animals. However, Lo and the length-tension curve of the transverse abdominis occurred at shorter fiber lengths in emphysematous animals because of a reduction in the number of sarcomeres in series along the fiber. The length-tension curve and the number of sarcomeres in the external oblique was the same in emphysematous and control animals. These results in normal animals indicate that the magnitude of the change in active and passive tension produced by a change in muscle length differs in the transverse abdominis and external oblique. Moreover, chronic hyperinflation of the thorax produced by elastase injection alters the length-tension relationships of some but not all the expiratory muscles.  相似文献   

19.
Infections produce significant respiratory muscle weakness, but the mechanisms by which inflammation reduces muscle force remain incompletely understood. Recent work suggests that caspase 3 releases actin and myosin from the contractile protein lattice, so we postulated that infections may reduce skeletal muscle force by activating caspase 3. The present experiments were designed to test this hypothesis by determining 1) diaphragm caspase 3 activation in the diaphragm after endotoxin and 2) the effect of a broad-spectrum caspase inhibitor, Z-Val-Ala-Asp(OCH3)-fluoromethylketone (zVAD-fmk), and a selective caspase 3 inhibitor, N-acetyl-Asp-Glu-Val-Asp-al (DEVD-CHO), on endotoxin-induced diaphragm weakness. Caspase 3 activation was assessed by measuring caspase protein levels and by measuring cleavage of a fluorogenic substrate. Diaphragm force was measured in response to electrical stimulation (1-150 Hz). Caspase-mediated spectrin degradation was assessed by Western blotting. Parameters were compared in mice given saline, endotoxin (12 mg/kg ip), endotoxin plus zVAD-fmk (3 mg/kg iv), zVAD-fmk alone, or endotoxin plus DEVD-CHO (3 mg/kg iv). Endotoxin increased diaphragm active caspase 3 protein (P<0.003), increased caspase 3 activity (P<0.002), increased diaphragm spectrin degradation (P<0.001), and reduced diaphragm force (P<0.001). Administration of zVAD-fmk or DEVD-CHO prevented endotoxin-induced weakness (e.g., force in response to 150-Hz stimulation was 23.8+/-1.4, 12.1+/-1.3, 23.5+/-0.8, 22.7+/-1.3, and 24.4+/-0.8 N/cm2, respectively, for control, endotoxin, endotoxin plus zVAD-fmk, endotoxin plus DEVD-CHO, and zVAD-fmk alone treated groups, P<0.001). Caspase inhibitors also prevented spectrin degradation. In conclusion, endotoxin administration elicits significant diaphragm caspase 3 activation and caspase-mediated diaphragmatic weakness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号