首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

2.
The sodium channel purified from rat brain is composed of three subunits: alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000). alpha and beta 2 subunits are linked through disulfide bonds. Procedures are described for preparative isolation of the beta 1 and beta 2 subunits under native conditions. Pure beta 2 subunits obtained by this procedure were used to prepare a specific anti-beta 2 subunit antiserum. Antibodies purified from this serum by antigen affinity chromatography recognize only disulfide-linked alpha beta 2 complexes and beta 2 subunits in immunoblots, and immunoprecipitate 32P-labeled alpha subunits of purified sodium channels having intact disulfide bonds, but not those of sodium channels from which beta 2 subunits have been detached by reduction of disulfide bonds. These antibodies also immunoprecipitate 89% of the high affinity saxitoxin-binding sites from rat brain membranes, indicating that nearly all sodium channels in rat brain have disulfide-linked alpha beta 2 subunits. Approximately 22% of beta 2 subunits in adult rat brain are not disulfide-linked to alpha subunits. Anti-beta 2 subunit antibodies are specific for sodium channels in the central nervous system and will not cross-react with sodium channels in skeletal muscle or sciatic nerve. The brains of a broad range of vertebrate species, including electric eel, are shown to express sodium channels with disulfide-linked alpha beta 2 subunits.  相似文献   

3.
Marron AO  Akam M  Walker G 《PloS one》2012,7(4):e32867

Background

Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens.

Methodology/Principal Findings

Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade.

Conclusions/Significance

The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel family of eukaryotic nitrile hydratases presented in this paper represents a promising candidate for research into their molecular biology and possible biotechnological applications.  相似文献   

4.

Background  

Microorganisms and plants are able to produce tryptophan. Enzymes catalysing the last seven steps of tryptophan biosynthesis are encoded in the canonical trp operon. Among the trp genes are most frequently trpA and trpB, which code for the alpha and beta subunit of tryptophan synthase. In several prokaryotic genomes, two variants of trpB (named trpB1 or trpB2) occur in different combinations. The evolutionary history of these trpB genes is under debate.  相似文献   

5.
Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.  相似文献   

6.
Glycine receptors mediating synaptic inhibition are heteromeric proteins constituted of alpha and beta subunits. The mammalian GlyR subunits constitute a subgroup in the superfamily of ligand-gated ionic channels. To compare the evolutionary events in the mammalian and teleostean lineages for the receptor family, we first undertook systematic cloning of the constitutive subunits of the zebrafish glycine receptor. The isolation of two alpha subunits (alphaZ1 and alphaZ2) and one beta subunit (betaZ) has been reported previously and we report here the characterization of two novel alpha subunits, alphaZ3 and alphaZ4, increasing the known zebrafish subunits number to four alpha and one beta. Establishment of phylogenetic relationships reveals that alphaZ1, alphaZ3 and betaZeta are orthologous to mammalian alpha1, alpha3 and beta subunits. However, two zebrafish GlyRalpha subunit genes are orthologous to the unique avian and mammalian alpha4 subunit revealing a duplication of the alpha4 gene in zebrafish. Whole-mount in situ hybridization in 24-hours post fertilization (hpf) and 52-hpf embryos of the daughter gene products display very different expression patterns indicating distinct functions of the duplicated genes. Gene mapping reveals that the two duplicated genes are localized on two different linkage groups (LG5 and LG22) as would be daughter genes resulting from a large-scale duplication of the ancestral genome. Finally, we report that a linked pair of genes on human chromosome 4 (alpha3 and beta) is also linked on linkage group 1 in zebrafish (alphaZ3 and betaZ) as a consequence of a mosaic conserved syntheny.  相似文献   

7.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

8.
Cyclic nucleotide-gated channels are tetramers composed of homologous alpha and beta subunits. C-terminal truncation mutants of the alpha and beta subunits of the retinal rod channel were expressed in Xenopus oocytes, and analyzed for cGMP- and cAMP-induced currents (single-channel records and macroscopic currents). When the alpha subunit truncated downstream of the cGMP-binding site (alpha D608stop) is co-injected with truncated beta subunits, the heteromeric channels present a drastic increase of cAMP sensitivity. A partial effect is observed with heteromeric alpha R656stop-containing channels, while alpha K665stop-containing channels behave like alpha wt/beta wt. The three truncated alpha subunits have wild-type activity when expressed alone. Heteromeric channels composed of alpha wt or truncated alpha subunits and chimeric beta subunits containing the pore domain of the alpha subunit have the same cAMP sensitivity as alpha-only channels. The results disclose the key role of two domains distinct from the nucleotide binding site in the gating of heteromeric channels by cAMP: the pore of the beta subunit, which has an activating effect, and a conserved domain situated downstream of the cGMP-binding site in the alpha subunit (I609-K665), which inhibits this effect.  相似文献   

9.

Background  

Based on inhibition tests, the alpha6beta1 integrin was suggested to be a sperm receptor, but further experiments using gene deletion techniques have shown that neither oocyte alpha6, nor beta1 integrin subunits were essential for mouse fertilization.  相似文献   

10.
The alpha and beta subunits of the rabbit skeletal muscle sodium channel have been separated and isolated preparatively under denaturing conditions. In this sodium channel, the beta subunit is not linked covalently to the alpha subunit. The isolated subunits have been subjected to amino acid and carbohydrate analysis. Both subunits are heavily glycosylated (alpha = 26.5%, beta = 29.7% carbohydrate by weight) with N-acetylneuraminic acid and N-acetylhexosamines representing the predominant monosaccharides in each. Enzymatic deglycosylation with neuraminidase and endoglycosidase F yielded single core peptides of approximately 209 kDa for the alpha subunit and 26.5 kDa for the beta subunit. Based on the known carbohydrate composition, the molecular masses for the glycosylated subunits are, therefore, 285 and 37.5 kDa for alpha and beta, respectively. Using the isolated subunits, we calibrated our protein-labeling system on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determined the subunit stoichiometry for the rabbit skeletal muscle channel; in the native preparation, the molar ratio of alpha:beta is 1 : 1.  相似文献   

11.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.

Background  

Prior to this report, members of the inward rectifier family, or Kir, have been found only in eukaryotes. Like most K+ channels, the pore-forming part of the protein is formed by four identical, or closely related, subunits. Each subunit contains a transmembrane M1-P-M2 motif that is followed by a relatively large C-terminus region unique to Kir's.  相似文献   

13.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

14.
In vertebrate olfactory receptors, cAMP produced by odorants opens cyclic nucleotide-gated (CNG) channels, which allow Ca(2+) entry and depolarization of the cell. These CNG channels are composed of alpha subunits and at least two types of beta subunits that are required for increased cAMP selectivity. We studied the molecular basis for the altered cAMP selectivity produced by one of the beta subunits (CNG5, CNCalpha4, OCNC2) using cloned rat olfactory CNG channels expressed in Xenopus oocytes. Compared with alpha subunit homomultimers (alpha channels), channels composed of alpha and beta subunits (alpha+beta channels) were half-activated (K(1/2)) by eightfold less cAMP and fivefold less cIMP, but similar concentrations of cGMP. The K(1/2) values for heteromultimers of the alpha subunit and a chimeric beta subunit with the alpha subunit cyclic nucleotide-binding region (CNBR) (alpha+beta-CNBRalpha channels) were restored to near the values for alpha channels. Furthermore, a single residue in the CNBR could account for the altered ligand selectivity. Mutation of the methionine residue at position 475 in the beta subunit to a glutamic acid as in the alpha subunit (beta-M475E) reverted the K(1/2,cAMP)/K(1/2,cGMP) and K(1/2, cIMP)/K(1/2,cGMP) ratios of alpha+beta-M475E channels to be very similar to those of alpha channels. In addition, comparison of alpha+beta-CNBRalpha channels with alpha+beta-M475E channels suggests that the CNBR of the beta subunit contains amino acid differences at positions other than 475 that produce an increase in the apparent affinity for each ligand. Like the wild-type beta subunit, the chimeric beta/alpha subunits conferred a shallow slope to the dose-response curves, increased voltage dependence, and caused desensitization. In addition, as for alpha+beta channels, block of alpha+betaCNBRalpha channels by internal Mg(2+) was not steeply voltage-dependent (zdelta approximately 1e(-)) as compared to block of alpha channels (zdelta 2.7e(-)). Thus, the ligand-independent effects localize outside of the CNBR. We propose a molecular model to explain how the beta subunit alters ligand selectivity of the heteromeric channels.  相似文献   

15.
Voltage-activated calcium channels are transmembrane proteins that act as transducers of electrical signals into numerous intracellular activities. On the basis of their electrophysiological properties they are classified as high- and low-voltage-activated calcium channels. High-voltage-activated calcium channels are heterooligomeric proteins consisting of a pore-forming alpha1 subunit and auxiliary alpha2delta, beta, and--in some tissues--gamma subunits. Auxiliary subunits support the membrane trafficking of the alpha1 subunit and modulate the kinetic properties of the channel. In particular, the alpha2delta subunit has been shown to modify the biophysical and pharmacological properties of the alpha1 subunit. The alpha2delta subunit is posttranslationally cleaved to form disulfide-linked alpha2 and, delta proteins, both of which are heavily glycosylated. Recently it was shown that at least four genes encode for alpha2delta subunits which are expressed in a tissue-specific manner. Their biophysical properties were characterized in coexpression studies with high- and low-voltage-activated calcium channels. Mutations in the gene encoding alpha2delta-2 have been found to underlie the ducky phenotype. This mouse mutant is a model for absence epilepsy and is characterized by spike wave seizures and cerebellar ataxia. Alpha2delta subunits can also support pharmacological interactions with drugs that are used for the treatment of epilepsy and neuropathic pain.  相似文献   

16.

Background  

High-molecular-weight glutenin subunits (HMW-GSs) have been considered as most important seed storage proteins for wheat flour quality. 1Ay subunits are of great interest because they are always silent in common wheat. The presence of expressed 1Ay subunits in diploid and tetraploid wheat genotypes makes it possible to investigate molecular information of active 1Ay genes.  相似文献   

17.

Background  

Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental studies as reference genes. Our previous studies have demonstrated that the expression of vimentin, one cytoskeletal protein, was increased in ultraviolet B (UVB)-irradiated fibroblasts. Thus, we examined the expression of other cytoskeleton protein genes, ACTB (actin, beta), TUBA1A (tubulin, alpha 1a), and TUBB1 (tubulin, beta 1), in human dermal fibroblasts irradiated by UVB to determine which of these candidates were the most appropriate reference genes.  相似文献   

18.
19.
Catterall WA 《Cell calcium》1998,24(5-6):307-323
Electrophysiological studies of neurons reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. High-voltage-activated neuronal Ca2+ channels are complexes of a pore-forming alpha 1 subunit of about 190-250 kDa, a transmembrane, disulfide-linked complex of alpha 2 and delta subunits, and an intracellular beta subunit, similar to the alpha 1, alpha 2 delta, and beta subunits previously described for skeletal muscle Ca2+ channels. The primary structures of these subunits have all been determined by homology cDNA cloning using the corresponding subunits of skeletal muscle Ca2+ channels as probes. In most neurons, L-type channels contain alpha 1C or alpha 1D subunits, N-type contain alpha 1B subunits, P- and Q-types contain alternatively spliced forms of alpha 1A subunits, R-type contain alpha 1E subunits, and T-type contain alpha 1G or alpha 1H subunits. Association with different beta subunits also influences Ca2+ channel gating substantially, yielding a remarkable diversity of functionally distinct molecular species of Ca2+ channels in neurons.  相似文献   

20.

Background  

Laminins represent major components of basement membranes and play various roles in embryonic and adult tissues. The functional laminin molecule consists of three chains, alpha, beta and gamma, encoded by separate genes. There are twelve different laminin genes identified in mammals to date that are highly homologous in their sequence but different in their tissue distribution. The laminin alpha -1 gene was shown to have the most restricted expression pattern with strong expression in ocular structures, particularly in the developing and mature lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号