首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piperidinyl diphenylsulfonyl sulfonamides are a novel class of molecules that have inhibitory binding affinity for sFRP-1. As a secreted protein sFRP-1 inhibits the function of the secreted Wnt glycoprotein. Therefore, as inhibitors of sFRP-1 these small molecules facilitate the Wnt/β-catenin canonical signaling pathway. Details of the structure–activity relationships and biological activity of this structural class of compounds will be discussed.  相似文献   

2.
Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that inhibits breast carcinoma cell motility, whereas the secreted glycoprotein thrombospondin-1 stimulates adhesion and motility of the same cells. We examined whether thrombospondin-1 and sFRP-1 interact directly or indirectly to modulate cell behavior. Thrombospondin-1 bound sFRP-1 with an apparent Kd = 48 nM and the related sFRP-2 with a Kd = 95 nM. Thrombospondin-1 did not bind to the more distantly related sFRP-3. The association of thrombospondin-1 and sFRP-1 is primarily mediated by the amino-terminal N-module of thrombospondin-1 and the netrin domain of sFRP-1. sFRP-1 inhibited α3β1 integrin-mediated adhesion of MDA-MB-231 breast carcinoma cells to a surface coated with thrombospondin-1 or recombinant N-module, but not adhesion of the cells on immobilized fibronectin or type I collagen. sFRP-1 also inhibited thrombospondin-1-mediated migration of MDA-MB-231 and MDA-MB-468 breast carcinoma cells. Although sFRP-2 binds similarly to thrombospondin-1, it did not inhibit thrombospondin-1-stimulated adhesion. Thus, sFRP-1 binds to thrombospondin-1 and antagonizes stimulatory effects of thrombospondin-1 on breast carcinoma cell adhesion and motility. These results demonstrate that sFRP-1 can modulate breast cancer cell responses by interacting with thrombospondin-1 in addition to its known effects on Wnt signaling.  相似文献   

3.
Secreted frizzled-related proteins (sFRPs) are glycoproteins that are recognized as Wnt antagonists. To identify the functional domains that are involved in Wnt antagonist function, several sFRP-1 mutants and sFRP-1/sFRP-2 chimeras were generated. These mutants were characterized in an optimized T-cell factor (TCF)-luciferase based assay in U2OS human osteosarcoma cells. Deletions of the sFRP-1 cysteine rich domain (CRD) lead to the complete loss of Wnt antagonist function. A region between amino acids 73-86 within the second loop of the CRD of sFRP-1 was necessary for the optimal Wnt inhibitory function. Within this region, a conserved tyrosine residue played a critical role, and its change to neutral or polar amino acids lead to decreased Wnt inhibitory activity. The sFRP-1/sFRP-2 chimeras with the netrin domain of sFRP-1 replaced by corresponding sFRP-2 sequences showed 40-70% loss of Wnt antagonist function. The sFRP-1/sFRP-2 chimera with the replacement of C-terminal 19 amino acids of sFRP-1 with 11 amino acids of sFRP-2 resulted in 70% loss of activity indicating that carboxyl-terminal region of sFRP-1 is important for its Wnt inhibitory activity. The structure-function analysis studies of sFRP-1 clearly demonstrate the interaction of several functional domains for its optimal Wnt antagonist function.  相似文献   

4.
Regulation of secreted Frizzled-related protein-1 by heparin   总被引:1,自引:0,他引:1  
Secreted Frizzled-related protein-1 (sFRP-1) belongs to a class of extracellular antagonists that modulate Wnt signaling pathways by preventing ligand-receptor interactions among Wnts and Frizzled membrane receptor complexes. sFRP-1 and Wnts are heparin-binding proteins, and their interaction can be stabilized by heparin in vitro. Here we report that heparin can specifically enhance recombinant sFRP-1 accumulation in a cell type-specific manner. The effect requires O-sulfation in heparin, and involves fibroblast growth factor-2 as well as fibroblast growth factor receptor-1. Interestingly, further investigation uncovers that heparin can also affect the post-translational modification of sFRP-1. We demonstrate that sFRP-1 is post-translationally modified by tyrosine sulfation at tyrosines 34 and 36, which is inhibited by the treatment of heparin. The results suggest that accumulation of sFRP-1 induced by heparin is in part due to the relative stabilization of unsulfated sFRP-1 and the direct stabilization by heparin. The study has revealed a multifaceted regulation on sFRP-1 protein by heparin.  相似文献   

5.
Regulated expression of sFRP-1 protein by the GeneSwitch system   总被引:3,自引:0,他引:3  
The GeneSwitch system is a mifepristone-inducible expression system that provides exceptionally low uninduced and high-induced protein expression in mammalian cells. We have developed an adenovirus recombinant containing GeneSwitch protein driven by the GAL4-tk promoter, as well as recombinants containing sFRP-1 and luciferase reporter under the control of the GAL4-E1b promoter. Luciferase activity in A549 cells infected with the GeneSwitch and Luciferase viruses is very low in ethanol-treated cells, while the level of luciferase activity increases 200-fold in cells treated with mifepristone. Conditional expression of functional sFRP-1 is demonstrated in A549, human osteoblast, and CHO cell lines by either the co-infection of cells with sFRP-1 and GeneSwitch viruses or the infection of GeneSwitch expressing cell lines with sFRP-1 virus and subsequent treatment with mifepristone. The expression of sFRP-1 is seen as early as 4 h post-mifepristone treatment, reaching the highest levels at 20 h. The sFRP-1 protein is present in conditioned media, and the protein is functional based upon its ability to inhibit the Wnt-mediated activation of TCF-Luciferase reporter activity. The regulated expression of sFRP-1 utilizing adenovirus vectors provides an opportunity to address the contribution of sFRP-1 in the regulation of stem cell differentiation, maturation, and their function by modulating the Wnt signaling.  相似文献   

6.
Secreted frizzled-related proteins (sFRPs) are modulators of Wnt signaling. This study was undertaken for definitive assessment of contribution of different sFRPs in osteoblastic differentiation of mesenchymal progenitor cells and apoptosis of osteoblasts. Treatment of C3H10T1/2 cells with sFRP-2 at concentrations of 10, 50, and 100 nM and sFRP-4 at low concentrations (5 nM) significantly increased Wnt-3A-induced alkaline phosphatase (ALP) activities, whereas sFRP-1 or 3 did not. Retroviral transduction of the sFRP-2 but not other sFRPs also significantly enhanced ALP activity induced by β-glycerophosphate and ascorbic acid. Furthermore, transfection of all the sFRP expression vectors significantly increased β-catenin/TCF reporter activity and the effects were most prominent with sFRP-2 and -4. In osteoblast apoptosis assay, only sFRP-3 increased etoposide-induced apoptosis in MC3T3-E1 mouse osteoblasts. In conclusion, we found that different repertoires of sFRPs exert differential effects on osteoblastic differentiation of mouse mesenchymal cells and cellular apoptosis of mouse osteoblasts in vitro.  相似文献   

7.
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields approximately 3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.  相似文献   

8.
Chuman Y  Uren A  Cahill J  Regan C  Wolf V  Kay BK  Rubin JS 《Peptides》2004,25(11):1831-1838
Secreted Frizzled-related proteins (sFRPs) bind Wnts and modulate their activity. To identify putative sFRP-1 binding motifs, we screened an M13 phage displayed combinatorial peptide library. A predominant motif, L/V-VDGRW-L/V, was present in approximately 70% of the phage that bound sFRP-1. Use of peptide/alkaline phosphatase chimeras and alanine scanning confirmed that the conserved motif was important for sFRP-1 recognition. The dissociation constant for a peptide/sFRP-1 complex was 3.9 microM. Additional analysis revealed that DGR was the core of the binding motif. Although Wnt proteins lack this sequence, other proteins possessing the DGR motif may function as novel binding partners for sFRP-1.  相似文献   

9.
Secreted Frizzled-related proteins can regulate metanephric development   总被引:5,自引:0,他引:5  
Wnt-4 signaling plays a critical role in kidney development and is associated with the epithelial conversion of the metanephric mesenchyme. Furthermore, secreted Frizzled-related proteins (sFRPs) that can bind Wnts are normally expressed in the developing metanephros, and function in other systems as modulators of Wnt signaling. sfrp-1 is distributed throughout the medullary and cortical stroma in the metanephros, but is absent from condensed mesenchyme and primitive tubular epithelia of the developing nephron where wnt-4 is highly expressed. In contrast, sfrp-2 is expressed in primitive tubules. To determine their role in kidney development, recombinant sFRP-1, sFRP-2 or combinations of both were applied to cultures of 13-dpc rat metanephroi. Both tubule formation and bud branching were markedly inhibited by sFRP-1, but concurrent sFRP-2 treatment restored some tubular differentiation and bud branching. sFRP-2 itself showed no effect on cultures of metanephroi. In cultures of isolated, induced rat metanephric mesenchymes, sFRP-1 blocked events associated with epithelial conversion (tubulogenesis and expression of lim-1, sfrp-2 and E-cadherin); however, it had no demonstrable effect on early events (compaction of mesenchyme and expression of wt1). As shown herein, sFRP-1 binds Wnt-4 with considerable avidity and inhibits the DNA-binding activity of TCF, an effector of Wnt signaling, while sFRP-2 had no effect on TCF activation. These observations suggest that sFRP-1 and sFRP-2 compete locally to regulate Wnt signaling during renal organogenesis. The antagonistic effect of sFRP-1 may be important either in preventing inappropriate development within differentiated areas of the medulla or in maintaining a population of cortical blastemal cells to facilitate further renal expansion. On the other hand, sFRP-2 might promote tubule formation by permitting Wnt-4 signaling in the presence of sFRP-1.  相似文献   

10.
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.  相似文献   

11.
Previous studies have associated activation of canonical Wnt signaling in osteoblasts with elevated bone formation. Here we report that deletion of the murine Wnt antagonist, secreted frizzled-related protein (sFRP)-1, prolongs and enhances trabecular bone accrual in adult animals. sFRP-1 mRNA was expressed in bones and other tissues of +/+ mice but was not observed in -/- animals. Despite its broad tissue distribution, ablation of sFRP-1 did not affect blood and urine chemistries, most nonskeletal organs, or cortical bone. However, sFRP-1-/- mice exhibited increased trabecular bone mineral density, volume, and mineral apposition rate when compared with +/+ controls. The heightened trabecular bone mass of sFRP-1-/- mice was observed in adult animals between the ages of 13-52 wk, occurred in multiple skeletal sites, and was seen in both sexes. Mechanistically, loss of sFRP-1 reduced osteoblast and osteocyte apoptosis in vivo. In addition, deletion of sFRP-1 inhibited osteoblast lineage cell apoptosis while enhancing the proliferation and differentiation of these cells in vitro. Ablation of sFRP-1 also increased osteoclastogenesis in vitro, although changes in bone resorption were not observed in intact animals in vivo. Our findings demonstrate that deletion of sFRP-1 preferentially activates Wnt signaling in osteoblasts, leading to enhanced trabecular bone formation in adults.  相似文献   

12.
13.
The mechanisms underlying the inverse relationship between osteogenic and adipogenic differentiation of bone marrow stromal cells (MSC) are not known in detail. We have previously established two cell lines from mouse bone marrow that are committed to either osteogenic (osteoblasts and chondrocytes) (mMSCBone) or adipogenic (mMSCAdipo) lineage. To identify the molecular mechanism determining the lineage commitment, we compared the basal gene expression profile of mMSCBone versus mMSCAdipo using Affymetrix GeneChip® MG430A 2.0 Array. Gene annotation analysis based on biological function revealed an over-representation of skeletal development genes in mMSCBone while genes related to lipid metabolism and immune response were highly expressed in mMSCAdipo. In addition, there was a significant up-regulation of canonical Wnt signalling genes in mMSCBone compared to mMSCAdipo (p < 0.006). Dual-luciferase assay and expression analysis of genes related to Wnt signalling demonstrated significant activation of Wnt signalling pathway in mMSCBone compared to mMSCAdipo. Reduced Wnt activity in mMSCAdipo was associated with increased expression of the Wnt inhibitor, secreted frizzled-related protein 1 (sFRP-1) at both mRNA and protein levels in mMSCAdipo. Interestingly, conditioned medium (CM) collected from mMSCAdipo (mMSC-CMAdipo) inhibited osteoblast differentiation of mMSC, while depletion of sFRP-1 protein from mMSC-CMAdipo abolished its inhibitory effect on osteoblast differentiation. Furthermore, treatment of mMSC with recombinant sFRP-1 resulted in a dose-dependent inhibition of osteoblast and stimulation of adipocyte differentiation. In conclusion, cross-talk exists between different populations of MSC in the bone marrow, and Wnt signalling functions as a molecular switch that determines the balance between osteoblastogenesis and adipogenesis.  相似文献   

14.
The Wnt genes encode a large family of secreted proteins that play a key role in embryonic development and tissue differentiation in many species (Rijsewijk et al., 1987 and Nusse and Varmus, 1992). Genetic and biochemical studies have suggested that the frizzled proteins are cell surface receptors for Wnts (Vinson et al., 1989, Chan et al., 1992, Bhanot et al., 1996 and Wang et al., 1996). In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified (Finch et al., 1997, Melkonyan et al., 1997 and Rattner et al., 1997). One of these proteins, FrzA, the bovine counterpart of the murine sFRP-1 (93% identity) is involved in vascular cell growth control, binds Wg in vitro and antagonizes Xwnt-8 and hWnt-2 signaling in Xenopus embryos (Xu et al., 1998 and Duplàa et al., 1999). In this study, we report that sFRP-1 is expressed in the heart and in the visceral yolk sac during mouse development, and that sFRP-1 and mWnt-8 display overlapping expression patterns during heart morphogenesis. From 8.5 to 12.5 d.p.c., sFRP-1 is expressed in cardiomyocytes together with mWnt-8 but neither in the pericardium nor in the endocardium; at 17.5 d.p.c., they are no longer present in the heart. In mouse adult tissues, while sFRP-1 is highly detected in the aortic endothelium and media and in cardiomyocytes, mWnt-8 is not detected in these areas. Immunoprecipitation experiments demonstrates that FrzA binds to mWnt-8 in cell culture experiments.  相似文献   

15.
Secreted Frizzled-related protein-1 (sFRP-1), a soluble protein that binds to Wnts and modulates Wnt signaling, contains an N-terminal domain homologous to the putative Wnt-binding site of Frizzled (Fz domain) and a C-terminal heparin-binding domain with weak homology to netrin. Both domains are cysteine-rich, having 10 and 6 cysteines in the Fz and heparin-binding domains, respectively. In this study, the disulfide linkages of recombinant sFRP-1 were determined. Numbering sFRP-1 cysteines sequentially from the N terminus, the five disulfide linkages in the Fz domain are 1-5, 2-4, 3-8, 6-10, and 7-9, consistent with the disulfide pattern determined for homologous domains of several other proteins. The disulfide linkages of the heparin-binding domain are 11-14, 12-15, and 13-16. This latter set of assignments provides experimental verification of one of the disulfide patterns proposed for netrin (NTR) modules and thereby supports the prediction that the C-terminal heparin-binding domain of sFRP-1 is an NTR-type domain. Interestingly, two subsets of sFRPs appear to have alternate disulfide linkage patterns compared with sFRP-1, one of which involves the loss of a disulfide due to deletion of a single cysteine from the NTR module, whereas the remaining cysteine may pair with a new cysteine introduced in the Fz domain of the protein. Analysis of glycosylation sites showed that sFRP-1 contains a relatively large carbohydrate moiety on Asn(172) (approximately 2.8 kDa), whereas Asn(262), the second potential N-linked glycosylation site, is not modified. No O-linked carbohydrate groups were detected. There was evidence of heterogeneous proteolytic processing at both the N and C termini of the recombinant protein. The predominant N terminus was Ser(31), although minor amounts of the protein with Asp(41) and Phe(50) as the N termini were observed. The major C-terminal processing event was removal of the terminal amino acid (Lys(313)) with only a trace amount of unprocessed protein detected.  相似文献   

16.
Suppressing Wnt signaling by the hedgehog pathway through sFRP-1   总被引:1,自引:0,他引:1  
  相似文献   

17.
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta, and SDF-1alpha, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression.  相似文献   

18.
A new bis(indole) alkaloid (9) of the hamacanthin class along with the previously reported compounds of the related structural classes, topsentin class (1-4) and hamacanthin class (5-8), was isolated from the marine sponge Spongosorites sp. and their inhibitory activities toward sortase A (SrtA) that play key roles in cell-wall protein anchoring and virulence in Staphylococcus aureus were evaluated. Our studies have identified a series of SrtA inhibitors, providing the basis for further development of potent inhibitors. The preliminary structure-activity relationship, to elucidate the essential structural requirements, has been described. The fibronectin-binding activity data highlight the potential of these compounds for the treatment of S. aureus infections via inhibition of SrtA activity.  相似文献   

19.
In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression.  相似文献   

20.
Wnts are a family of secreted proteins involved in multiple developmental mechanisms during nervous system development, including cell proliferation, cell migration, axon guidance and specification of cell positional information. We report here the expression of sFRP-1 mRNA, encoding a putative inhibitor of Wnt, in the developing mouse neocortex during the entire period when neurons for the neocortex are born. We show that sFRP-1 mRNA expression is spatially restricted to the proliferative zones during the period, when neurons are known to be generated in large numbers for the enlarging cortical plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号