首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.  相似文献   

2.
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."  相似文献   

3.
4.
Brain astrocytes provide structural and metabolic support to surrounding cells during ischemia. Glucose and oxygen are critical to brain function, and glucose uptake and metabolism by astrocytes are essential to their metabolic coupling to neurons. To examine astrocyte metabolic response to hypoxia, cell survival and metabolic parameters were assessed in rat primary cortical astrocytes cultured for 3 weeks in either normoxia or in either 1 day or 3 weeks sustained hypoxia (5% O2). Although cell survival and proliferation were not affected by the mildly hypoxic environment, substantial differences in glucose consumption and lactate release after either acute or prolonged hypoxia suggest that astrocyte metabolism may contribute to their adaptation. Hypoxia over a period of 1 day increased glucose uptake, lactate release, and glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) expression, whereas hypoxia over a period of 3 weeks resulted in a decrease of all parameters. Furthermore, increased glucose uptake at 1 day of hypoxia was not inhibited by cytochalasin B suggesting the involvement of additional glucose transporters. We uncovered hypoxia-regulated expression of sodium-dependent glucose transporters (SGLT1) in astrocytes indicating a novel adaptive strategy involving both SGLT1 and GLUT1 to regulate glucose intake in response to hypoxia. Overall, these findings suggest that although increased metabolic response is required for the onset of astrocyte adaptation to hypoxia, prolonged hypoxia requires a shift to an energy conservation mode. These findings may contribute to the understanding of the relative tolerance of astrocytes to hypoxia compared with neurons and provide novel therapeutic strategies aimed at maintaining brain function in cerebral pathologies involving hypoxia.  相似文献   

5.
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons'' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.  相似文献   

6.
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.  相似文献   

7.
The learning process sets in motion a prolonged, reproducible, and complicated pattern of brain activation, which provides information about biochemical reactions in activated brain. Study of this pattern during one-trial aversive bead discrimination in day-old chick is facilitated by precise timing of sequential metabolic events occurring between a 10-s learning period, in which the chicks learn to associate a red bead with aversive taste, and memory consolidation, indicated by unwillingness to peck at untainted red beads while freely pecking at corresponding blue beads. Inhibition of learning by metabolic inhibitors and restoration of memory by specific substrates at specific times allow determination of specific metabolic events and their neuronal or astrocytic localization. Downstream metabolism of glycogen and of glucose to pyruvate/lactate is segregated into separate pools. Glucose metabolism via pyruvate dehydrogenation provides energy in both neurons and astrocytes and may include gap junction-mediated lactate transport into astrocytes. A key role is played by glycogenolysis, stimulated by β2-adrenergic and/or 5-HT2-receptor stimulation along with α2-adrenergic stimulation of glycogen synthesis. The importance of glycogen reflects that it selectively supports de novo synthesis of transmitter glutamate by combined pyruvate dehydrogenation and carboxylation in astrocytes.  相似文献   

8.
Brain is a highly-oxidative organ, but during activation, glycolytic flux is preferentially up-regulated even though oxygen supply is adequate. The biochemical and cellular basis of metabolic changes during brain activation and the fate of lactate produced within brain are important, unresolved issues central to understanding brain function, brain images, and spectroscopic data. Because in vivo brain imaging studies reveal rapid efflux of labeled glucose metabolites during activation, lactate trafficking among astrocytes and between astrocytes and neurons was examined after devising specific, real-time, sensitive enzymatic fluorescent assays to measure lactate and glucose levels in single cells in adult rat brain slices. Astrocytes have a 2- to 4-fold faster and higher capacity for lactate uptake from extracellular fluid and for lactate dispersal via the astrocytic syncytium compared to neuronal lactate uptake from extracellular fluid or shuttling of lactate to neurons from neighboring astrocytes. Astrocytes can also supply glucose to neurons as well as glucose can be taken up by neurons from extracellular fluid. Astrocytic networks can provide neuronal fuel and quickly remove lactate from activated glycolytic domains, and the lactate can be dispersed widely throughout the syncytium to endfeet along the vasculature for release to blood or other brain regions via perivascular fluid flow.  相似文献   

9.
Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during brain activation. Furthermore, glutamate uptake into cultured astrocytes stimulates glutamate oxidation and oxygen consumption, and glutamate maintains respiration as well as glucose. The neurotransmitter pool of glutamate is associated with the faster component of total glutamate turnover in vivo, and use of neurotransmitter glutamate to fuel its own uptake by oxidation-competent perisynaptic processes has two advantages, substrate is supplied concomitant with demand, and glutamate spares glucose for use by neurons and astrocytes. Some, but not all, perisynaptic processes of astrocytes in adult rodent brain contain mitochondria, and oxidation of only a small fraction of the neurotransmitter glutamate taken up into these structures would be sufficient to supply the ATP required for sodium extrusion and conversion of glutamate to glutamine. Glycolysis would, however, be required in perisynaptic processes lacking oxidative capacity. Three lines of evidence indicate that critical cornerstones of the astrocyte-to-neuron lactate shuttle model are not established and normal brain does not need lactate as supplemental fuel: (i) rapid onset of hemodynamic responses to activation delivers oxygen and glucose in excess of demand, (ii) total glucose utilization greatly exceeds glucose oxidation in awake rodents during activation, indicating that the lactate generated is released, not locally oxidized, and (iii) glutamate-induced glycolysis is not a robust phenotype of all astrocyte cultures. Various metabolic pathways, including glutamate oxidation and glycolysis with lactate release, contribute to cellular energy demands of excitatory neurotransmission.  相似文献   

10.
Functional magnetic resonance spectroscopy (fMRS) allows the non-invasive measurement of metabolite concentrations in the human brain, including changes induced by variations in neurotransmission activity. However, the limited spatial and temporal resolution of fMRS does not allow specific measurements of metabolites in different cell types. Thus, the analysis of fMRS data in the context of compartmentalized metabolism requires the formulation and application of mathematical models. In the present study we utilized the mathematical model introduced by Simpson et al . (2007) to gain insights into compartmentalized metabolism in vivo from the fMRS data obtained in humans at ultra high magnetic field by Mangia et al . (2007a) . This model simulates brain glucose and lactate levels in a theoretical cortical slice. Using experimentally determined concentrations and catalytic activities for the respective transporter proteins, we calculate inflow and export of glucose and lactate in endothelium, astrocytes, and neurons. We then vary neuronal and astrocytic glucose and lactate utilization capacities until close correspondence is observed between in vivo and simulated glucose and lactate levels. The results of the simulations indicate that, when literature values of glucose transport capacity are utilized, the fMRS data are consistent with export of lactate by neurons and import of lactate by astrocytes, a mechanism that can be referred to as a neuron-to-astrocyte lactate shuttle. A shuttle of lactate from astrocytes to neurons could be simulated, but this required the astrocytic glucose transport capacity to be increased by 12-fold, and required that neurons not respond to activation with increased glycolysis, two conditions that are not supported by current literature.  相似文献   

11.
Brain glycogen metabolism was investigated by employing isofagomine, an inhibitor of glycogen phosphorylase. Cultured cerebellar and neocortical astrocytes were incubated in medium containing [U-13C]glucose in the absence or presence of isofagomine and the amounts and percent labeling of intra- and extracellular metabolites were determined by mass spectrometry (MS). The percent labeling in glycogen was markedly decreased in the presence of isofagomine. Surprisingly, the percent labeling of intracellular lactate was also decreased demonstrating the importance of glycogen turnover. The decrease was limited to the percent labeling in the intracellular pool of lactate, which was considerably lower compared to that observed in the medium in which it was close to 100%. These findings indicate compartmentation of lactate derived from glycogenolysis and that derived from glycolysis. Inhibiting glycogen degradation had no effect on the percent labeling in citrate. However, the percent labeling of extracellular glutamine was slightly decreased in neocortical astrocytes exposed to isofagomine, indicating an importance of glycogen turnover in the synthesis of releasable glutamine. In conclusion, the results demonstrate that glycogen in cultured astrocytes is continuously synthesized and degraded. Moreover, it was found that lactate originating from glycogen is compartmentalized from that derived from glucose, which lends further support to a compartmentalized metabolism in astrocytes. Special issue dedicated to Dr. Bernd Hamprecht.  相似文献   

12.
Gonadal hormones have been shown to modulate memory retention in female rats. The current experiments examine the role of testicular hormones in modulating the performance of male rats on two spatial water maze tasks. In the first study, castrated and intact rats were trained on the visible platform and hidden platform versions of the Morris water maze task. Castration did not affect performance on either version of this reference memory task with castrated and intact rats demonstrating similar performance both during acquisition and on post-training probe trials. In the second experiment, castrated and intact rats were tested on a delayed-matching-to-place version of the water maze. Rats received a series of trial pairs in the maze with a hidden platform located in the same pool location on the exposure and retention trials of each pair; between pairs of trials, however, the platform was repositioned to a novel pool location. The interval between trials was either 10- or 60-min and memory retention, taken as the difference between the pathlengths on the exposure and retention trials, declined as the interval increased. Relative to intact males, castrated males demonstrated impaired working memory retention at 60-min but not at 10-min retention intervals. This interval-dependent impairment in working memory retention was reversed by physiologic levels of testosterone replacement. These findings indicate that castration does not significantly affect acquisition or probe trial performance on a classic reference memory task but does impair spatial working memory retention, an effect that is reversed by exogenous testosterone.  相似文献   

13.
Metabolic responses of brain cells to a stimulus are governed, in part, by their enzymatic specialization and interrelationships with neighboring cells, and local shifts in functional metabolism during brain activation are likely to be influenced by the neurotransmitter system, subcellular compartmentation, and anatomical structure. Selected examples of functional activation illustrate the complexity of metabolic interactions in working brain and of interpretation of changes in brain lactate levels. The major focus of this article is the disproportionately higher metabolism of glucose compared to oxygen in normoxic brain, a phenomenon that occurs during activation in humans and animals. The glucose utilized in excess of oxygen is not fully explained by accumulation of glucose, lactate, or glycogen in brain or by lactate efflux from brain to blood. Thus, any lactate derived from the excess glucose could not have been stoichiometrically exported to and metabolized by neighboring neurons because oxygen consumption would have otherwise increased and matched that of glucose. Metabolic labeling of tricarboxylic acid cycle-derived amino acids increased during brief sensory stimulation, reflecting a rise in oxidative metabolism. Brain glycogen is mainly in astrocytes, and its level falls throughout the stimulus and early post-activation interval. Glycogenolysis cannot be accounted for by lactate accumulation or oxidation; there must be rapid product clearance. Glycogen restoration is slow and diversion of glucose from oxidative pathways for its re-synthesis could reduce the global O(2)/glucose uptake ratio; astrocytes could downshift this ratio for up to an hour after 5 min stimulus. Morphological studies of astrocytes reveal a paucity of cytoplasm and organelles in the fine processes that surround synapses and form gap junction connections with neighboring astrocytes. Specialized regions of astrocytes, e.g. their endfeet and thin peripheral lamellae, are likely to have compartmentalized metabolic activities. Anatomical constraints imposed upon the fine processes might require preferential utilization of glycolysis to satisfy their energy demands, but rapid lactate clearance would then be essential, since its accumulation would inhibit glycolysis. Gap junctional connections between neighboring astrocytes provide a mechanism for rapid metabolite spreading via the astrocytic syncytium and elimination of by-products. Local structure-function relationships need to be incorporated into experimental models of neuron-astrocyte and astrocyte-astrocyte interactions in working brain.  相似文献   

14.
Chen XL  Lu G  Gong YX  Zhao LC  Chen J  Chi ZQ  Yang YM  Chen Z  Li QL  Liu JG 《Cell research》2007,17(8):689-700
Dependence and impairment of learning and memory are two well-established features caused by abused drugs such as opioids. The hippocampus is an important region associated with both drug dependence and learning and memory. However, the molecular events in hippocampus following exposure to abused drugs such as opioids are not well understood. Here we examined the effect of chronic morphine treatment on hippocampal protein expression by proteomic analyses. We found that chronic exposure of mice to morphine for 10 days produced robust morphine withdrawal jumping and memory impairment, and also resulted in a significant downregulation of hippocampal protein levels of three metabolic enzymes, including Fe-S protein 1 of NADH dehydrogenase, dihydrolipoamide acetyltransferase or E2 component of the pyruvate dehydrogenase complex and lactate dehydrogenase 2. Further real-time quantitative PCR analyses confirmed that the levels of the corresponding mRNAs were also remarkably reduced. Consistent with these findings, lower ATP levels and an impaired ability to convert glucose into ATP were also observed in the hippocampus of chronically treated mice. Opioid antagonist naltrexone administrated concomitantly with morphine significantly suppressed morphine withdrawal jumping and reversed the downregulation of these proteins. Acute exposure to morphine also produced robust morphine withdrawal jumping and significant memory impairment, but failed to decrease the expression of these three proteins. Intrahippocampal injection of D-glucose before morphine administration significantly enhanced ATP levels and suppressed morphine withdrawal jumping and memory impairment in acute morphine-treated but not in chronic morphine-treated mice. Intraperitoneal injection of high dose of D-glucose shows a similar effect on morphine-induced withdrawal jumping as the central treatment. Taken together, our results suggest that reduced expression of the three metabolic enzymes in the hippocampus as a result of chronic morphine treatment contributes to the development of drug-induced symptoms such as morphine withdrawal jumping and memory impairment.  相似文献   

15.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

16.
Glucose is commonly admitted to be the main substrate for brain energy requirement. However, it has been recently proposed that lactate, generated from glucose via glycolysis, would be the oxidative substrate for neurons, particularly during neuronal activation, according to a mechanism called the astrocyte-neuron lactate shuttle hypothesis (ANLSH). In that mechanism, glutamate released in the synaptic cleft during brain activation is taken up by astrocytes. This uptake, via the glutamate/Na(+) transporter, induces the entry of sodium, which is then excluded from the astrocytes via the Na(+)/K(+) ATPase. This exclusion consumes ATP, which stimulates glycolysis and thus lactate formation in astrocytes. This lactate is then transferred to neurons where it is utilized as oxidative substrate. This review tries to gather the recent evidences that support this hypothesis and presents the contribution of NMR to this matter.  相似文献   

17.
18.
19.
Brain metabolism of glucose and lactate was analyzed by ex vivo NMR spectroscopy in rats presenting different cerebral activities induced after the administration of pentobarbital, alpha-chloralose, or morphine. The animals were infused with a solution of either [1-(13)C]glucose plus lactate or glucose plus [3-(13)C]lactate for 20 min. Brain metabolite contents and enrichments were determined from analyses of brain tissue perchloric acid extracts according to their post-mortem evolution kinetics. When amino acid enrichments were compared, both the brain metabolic activity and the contribution of blood glucose relative to that of blood lactate to brain metabolism were linked with cerebral activity. The data also indicated the production in the brain of lactate from glycolysis in a compartment other than the neurons, presumably the astrocytes, and its subsequent oxidative metabolism in neurons. Therefore, a brain electrical activity-dependent increase in the relative contribution of blood glucose to brain metabolism occurred via the increase in the metabolism of lactate generated from brain glycolysis at the expense of that of blood lactate. This result strengthens the hypothesis that brain lactate is involved in the coupling between neuronal activation and metabolism.  相似文献   

20.
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号