首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic is a ubiquitous environmental toxic metal. Consequently, organisms detoxify arsenate by reduction to arsenite, which is then excreted or sequestered. The ArsC arsenate reductase from Escherichia coli plasmid R773, the best characterized arsenic-modifying enzyme, has a catalytic cysteine, Cys 12, in the active site, surrounded by an arginine triad composed of Arg 60, Arg 94, and Arg 107. During the reaction cycle, the native enzyme forms a unique monohydroxyl Cys 12-thiol-arsenite adduct that contains a positive charge on the arsenic. We hypothesized previously that this unstable intermediate allows for rapid dissociation of the product arsenite. In this study, the role of Arg 60 in product formation was evaluated by mutagenesis. A total of eight new structures of ArsC were determined at resolutions between 1.3 A and 1.8 A, with R(free) values between 0.18 and 0.25. The crystal structures of R60K and R60A ArsC equilibrated with the product arsenite revealed a covalently bound Cys 12-thiol-dihydroxyarsenite without a charge on the arsenic atom. We propose that this intermediate is more stable than the monohydroxyarsenite intermediate of the native enzyme, resulting in slow release of product and, consequently, loss of activity.  相似文献   

2.
3.
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.  相似文献   

4.
Shrub willows have demonstrated potential in many types of phytoremediation applications. Hydroponic culture was used to assess arsenic (As) tolerance and uptake by four shrub willow clones and to determine the effects of phosphate on As accumulation. After 4 weeks of growth in the absence of As, plants received one of four treatments: 0.25X Hoagland's minus P (?P), 0.25X Hoagland's minus P plus 100 μM arsenate (As100(?P)), 0.25X Hoagland's minus P plus 250 μM arsenate (As250(?P)), and 0.25X Hoagland's plus 250 μM arsenate (As250(+P)). Except for treatment As250(+P), phosphate was excluded due to its tendency to interfere with As uptake. After 3 weeks of treatment, plants were separated into root, leaf, and stem tissues. Biomass production and transpiration were used to quantify As tolerance. There was wide variation among clones in As tolerance and uptake. The presence of phosphate in solution alleviated the negative impacts of As on biomass and transpiration and also increased aboveground As accumulation, suggesting that phosphate may play a role in reducing toxicity and enhancing As uptake by willow shrubs. These findings offer insight into As tolerance and uptake in Salix spp. and add to the growing body of evidence supporting the use of shrub willow for phytoremediation.  相似文献   

5.
6.
The arsenate resistance operon of R-factor R773, a conjugative resistance plasmid, has two functional regions, a promoter-proximal region encoding resistance to arsenite and antimonate, and a promoter-distal one encoding arsenate resistance. Cells bearing arsenite resistance plasmids exhibited reduced accumulation of 74AsO2-. When resistant cells were depleted of endogenous energy reserves and then loaded with 74AsO2-, active extrusion of the ion was observed when an energy source was supplied. Intracellular ATP was required for extrusion, but a proton motive force was neither necessary nor sufficient. An arsenite-sensitive mutant was unable to extrude arsenite, while an arsenate-sensitive mutant had normal arsenite transport. These results suggest that the action of a plasmid-encoded primary arsenite efflux pump is the mechanism of arsenite resistance.  相似文献   

7.
8.
9.
The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.  相似文献   

10.
11.
A solution culture experiment was conducted to investigate the effect of silicate on the yield and arsenate uptake by rice. Rice seedlings (Oryza sativaL. cv. Weiyou 77) were cultured in modified Hoagland nutrient solution containing three arsenate levels (0, 0.5 and 1.0 mg L –1 As) and four silicate levels (0, 14, 28 and 56 mg L –1 Si). Addition of Si significantly increased shoot dry weight (P=0.001) but had little effect on root dry weight (P=0.43). Addition of As had no significant effect on shoot dry weight (P=0.43) but significantly increased root dry weight (P=0.01). Silicon concentrations in shoots and roots increased proportionally to increasing amounts of externally supplied Si (P < 0.001). The presence of As in the nutrient solution had little effect on shoot Si concentration (P=0.16) but significantly decreased root Si concentration (P=0.005). Increasing external Si concentration significantly decreased shoot and root As concentrations and total As uptake by rice seedlings (P <0.001). In addition, Si significantly decreased shoot P concentration and shoot P uptake (P <0.001). The data clearly demonstrate a beneficial effect of Si on the growth of rice seedlings. Addition of Si to the growth medium also inhibited the uptake of arsenate and phosphate by the rice seedlings.  相似文献   

12.
Arsenate accumulation and reduction kinetics at both high and low phosphate concentrations were investigated in the green alga Chlorella sp, isolated from the arsenic-contaminated Upper Mystic Lake near Boston, MA. Growth rate, accumulated cellular arsenic, and release of As(III) were determined over a range of arsenate concentrations. Arsenate inhibited growth and reduced final cell yield at high phosphate concentration. However, growth rate, final cell yield, and cellular arsenic content were all enhanced by higher arsenate concentrations in cultures grown at a low concentration of phosphate. The traditional view that phosphate-limited cells are necessarily more sensitive to As(V) toxicity may not be correct. The reduction rates of As(V) by Chlorella sp. obtained in our laboratory were similar to net reduction rates measured in epilimnetic water from the Upper Mystic Lake, demonstrating the importance of phytoplankton in arsenic reduction in freshwater.  相似文献   

13.
Rapid reduction of arsenate in the medium mediated by plant roots   总被引:9,自引:1,他引:8  
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 microm arsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.  相似文献   

14.
This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L?1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L?1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg?1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L?1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.  相似文献   

15.
16.
17.
Arsenate [As(V)] toxicity is considered to be derived from similarities in the chemical properties of As(V) and phosphate (Pi). An Arabidopsis thaliana mutant of inositol pentakisphosphate 2‐kinase (AtIPK1), atipk1‐1, has previously exhibited lower level of phytate and higher level of Pi, relative to wild‐type (WT). Here, atipk1‐1 displayed hypersensitivity to As(V) stress and less As(V) uptake when compared to WT. Overexpression of AtIPK1 controlled by the CaMV 35S promoter partially rescued the As(V)‐sensitive phenotype of atipk1‐1. When compared to control Pi status, addition of Pi enhanced As(V) tolerance of both WT and atipk1‐1 plants, while the arsenic concentration was less reduced in the latter genotype. Despite the higher Pi level in atipk1‐1 than did WT plants, the mutant suffered more severe Pi starvation under Pi limitation stress, indicating that Pi homeostasis was altered in the mutant. Gene expression analysis of WT and atipk1‐1 plants showed the diverse effect of As(V) stress on Pi starvation‐dependent regulation of Pi‐responsive genes. Our study suggested that a particular mechanism of As(V) toxicity existed in atipk1‐1 mutant, and may offer new insights into the interactions between Pi homeostasis and As(V) detoxification in plants.  相似文献   

18.
Due to the recent enactment of a stricter drinking water standard for arsenate, large quantities of arsenate-laden drinking water residuals will be disposed in municipal landfills. The objective of this study was to determine the role of methanogenic consortia on the conversion of arsenate. Methanogenic conditions commonly occur in mature municipal solid waste landfills. The results indicate the rapid and facile reduction of arsenate to arsenite in methanogenic sludge. Endogenous substrates in the sludge were sufficient to support the reductive biotransformation. However the rates of arsenate reduction were stimulated by the addition of exogenous electron donating substrates, such as H2, lactate or a mixture of volatile fatty acids. A selective methanogenic inhibitor stimulated arsenate reduction in microcosms supplied with H2, suggesting that methanogens competed with arsenate reducers for the electron donor. Rates of arsenate reduction increased with arsenate concentration up to 2 mM, higher concentrations were inhibitory. The electron shuttle, anthraquinone-2,6-disulfonate, used as a model of humic quinone moieties, was shown to significantly increase rates of arsenate reduction at substoichiometric concentrations. The presence of sulfur compounds, sulfate and sulfide, did not affect the rate of arsenate transformation but lowered the yield of soluble arsenite, due to the precipitation of arsenite with sulfides. The results taken as a whole suggest that arsenate disposed into anaerobic environments may readily be converted to arsenite increasing the mobility of arsenic. The extent of the increased mobility will depend on the concentration of sulfides generated from sulfate reduction.  相似文献   

19.
The toxic metalloid arsenic is an abundant element and most organisms possess transport systems involved in its detoxification. One such family of arsenite transporters, the ACR3 family, is widespread in fungi and bacteria. To gain a better understanding of the molecular mechanism of arsenic transport, we report here the expression and characterization of a family member, So_ACR3, from the bacterium Shewanella oneidensis MR-1. Surprisingly, expression of this transporter in the arsenic-hypersensitive Escherichia coli strain AW3110 conferred resistance to arsenate, but not to arsenite. Purification of a C-terminally His-tagged form of the protein allowed the binding of putative permeants to be directly tested: arsenate but not arsenite quenched its intrinsic fluorescence in a concentration-dependent fashion. Fourier transform infrared spectroscopy showed that the purified protein was predominantly α-helical. A mutant bearing a single cysteine residue at position 3 retained the ability to confer arsenate resistance, and was accessible to membrane impermeant thiol reagents in intact cells. In conjunction with successful C-terminal tagging with oligohistidine, this finding is consistent with the experimentally-determined topology of the homologous human apical sodium-dependent bile acid transporter, namely 7 transmembrane helices and a periplasmic N-terminus, although the presence of additional transmembrane segments cannot be excluded. Mutation to alanine of the conserved residue proline 190, in the fourth putative transmembrane region, abrogated the ability of the transporter to confer arsenic resistance, but did not prevent arsenate binding. An apparently increased thermal stability is consistent with the mutant being unable to undergo the conformational transitions required for permeant translocation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号