首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
刊首语     
许文涛 《生物技术进展》2019,(6):I0001-I0001
从20世纪60年代Clark和Lyon提出生物传感器的设想开始,生物传感器的发展距今已有几十年的历史了。生物传感器与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科共同处在生命科学和信息科学的交叉领域,又因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂体系中能连续监测的特点,在近几十年获得了蓬勃而迅速的发展。  相似文献   

2.
《生物技术产业》2006,(2):92-93
生物传感器;生物芯片技术;……[编者按]  相似文献   

3.
生物传感芯片是一类综合了生物芯片和生物传感器的优点的新型生物芯片,在保持传统生物芯片的高通量、可寻址、并行处理等特点的基础上,与生物传感器技术相结合,进一步提高了芯片检测的灵敏度和特异性。常见的生物传感芯片主要有光纤传感芯片、表面等离子体共振传感芯片、热生物传感芯片、压电晶体传感芯片等,可用于各种生物大分子,如蛋白质、核酸等的检测,金属离子的测定,病原体的检测,药物筛选等。  相似文献   

4.
由清华大学和博奥生物有限公司暨生物芯片北京国家工程研究中心共同承担的系统化生物芯片和相关仪器设备项目获得国家技术发明二等奖。参与该项目的赵智贤博士指出,生物芯片是具有战略意义的前沿高新技术。这一新技术平台所具有的高通量、多参数及快速等特点,为生物和医药相关的生命科学研究和应用领域将带来了巨大冲击。  相似文献   

5.
生物芯片的概念于20世纪90年代初期提出.之后便涌现出大量关于生物芯片的报道.尤其是进入21世纪,随着生物芯片技术所涉及的物理、化学、生物等技术的快速发展,生物芯片技术取得了很好的进展.技术平台日益稳定.开发的产品越来越多,已经在生命科学,药物研发,临床疾病检测与诊断.环境,农林业等领域中得到了广泛的应用。本文对生物芯片技术的原理、制备、试验设计和应用等方面进行了简要的综述。  相似文献   

6.
简要概述了生物电化学的研究领域,包括生物体系和生物界面模拟、生物分子的电化学、生物电催化、光合作用模拟和活组织电化学;总结了生物电化学传感器、生物芯片和生物电化学反应器在环境监测中的应用现状,并提出了其发展趋势,即不断向商品化方向发展,实现环境污染物的在线检测;利用基因技术,创造出检测能力更强的生物传感器和生物芯片;与其他精密分析仪器相结合,向多功能、集成化、智能化、微型化方向发展。  相似文献   

7.
会议消息     
“生物芯片:技术与应用”研讨会由中国生物工程学会和丰记仪器股份有限公司共同主办的“生物芯片:技术与应用”研讨会订于2000年3月27日起在北京、西安、上海举行。研究会邀请了中美两国从事生物芯片和蛋白质族研究的科学家和有关领导作大会报告。会议主要内容包括:生物芯片的最新技术及应用;蛋白质族研究最新进展;生物信息学;我国的人类基因组研究;生物芯片与人类基因测定技术;生物芯片与临床检测;生物芯片与风险投资;以及有关的政策规划等内容(详细内容另行通知)。会议参加人员:从事分子生物学研究、新药研究开发、临…  相似文献   

8.
李宏 《生物信息学》2010,8(1):78-81
针对我国生物信息产业的现状及存在的问题进行分析,介绍了生物信息学以及生物芯片研究的现状和新技术、生物信息产业的发展,并对生物信息产业的知识产权保护问题进行了分析和讨论。对于今后如何发展我国生物信息产业以及如何采取策略和措施提供参考。  相似文献   

9.
科技部863生物领域专家组于6月中旬分别在南京和上海召开了“生物芯片技术”和“组织工程技术”研讨会。在会上,经过认真评议,决定批准启动“生物芯片技术”和“组织工程技术”两个项目,并作为该领域重点课题。生物芯片技术和组织工程技术是目前国际生物技术领域的...  相似文献   

10.
研发动态     
《中国生物工程杂志》2006,26(7):112-113
中国科学院生物芯片研制最新进展两则中国科学院力学研究所国家微重力实验室靳刚课题组成功研制出“蛋白质芯片生物传感器系统”及其实用化样机。该研究将多种蛋白质活性微列阵、生物分子特异结合性,与高分辨率椭偏光学成像技术相结合,提供了  相似文献   

11.
12.
Recent advances in cell biology, fluorescent probe chemistry, miniaturization and automation have allowed the use of mammalian cells in a variety of medical and industrial applications. Here we describe the generation of cell-based biosensors, engineered to optically report specific biological activity. Cellular biosensors are comprised of living cells and can be used in various applications, including screening chemical libraries for drug discovery and environmental sensing. Panels of biosensors may also be useful for elucidating the function of novel genes. Here we describe two examples of the construction and use of engineered cell lines as biosensors for drug discovery.  相似文献   

13.
The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips.  相似文献   

14.
15.
In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling.  相似文献   

16.
Label-free sensing technologies have recently attracted a great deal of interest for sensitive, rapid and facile analysis for applications in health care, environmental monitoring, food safety and homeland security. One-dimensional (1-D) nanostructures such as nanowires, configured as field-effect transistors (FETs)/chemiresistors that change conductance upon binding of charged macromolecules to receptors linked to the device surfaces are extremely attractive for label-free biosensors. Herein, we review recent advances in label-free biosensors based on conducting polymer nanowires based FET/chemiresistor. Specifically, we address the fabrication, functionalization, assembly/alignment and sensing applications of FET/chemiresistor based on these nanomaterials. The advantages and disadvantages of various fabrication, functionalization, and assembling procedures of these nanosensors are reviewed and discussed.  相似文献   

17.
The need for companion diagnostics, point-of-care testing (POCT) and high-throughput screening in clinical diagnostics and personalized medicine has pushed the need for more biological information from a single sample at extremely low concentrations and volumes. Optical biosensors based on semiconductor quantum dots (QDs) can answer these requirements because their unique photophysical properties are ideally suited for highly sensitive multiplexed detection. Many different biological systems have been successfully scrutinized with a large variety of QDs over the past decade but their future as widely applied commercial biosensors is still open. In this review, we highlight recent in vitro diagnostic and cellular imaging applications of QDs and discuss milestones and obstacles on their way toward integration into real-life diagnostic and medical applications.  相似文献   

18.
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.  相似文献   

19.
Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applications (such as the enzyme biosensors for blood glucose analysis). Nevertheless, the fastest growing area in the biosensors research literature continues to involve advances in affinity-based biosensors and biosensor-related methods. Numerous biosensor techniques have been reported that allow researchers to better study the kinetics, structure, and (solid/liquid) interface phenomena associated with protein-ligand binding interactions. In addition, potential application areas for which affinity-based biosensor techniques show promise include clinical/diagnostics, food processing, military/antiterrorism, and environmental monitoring. The design and structural features of these devices—composed of a biological affinity element interfaced to a signal transducer—primarily determine their operational characteristics. This paper although not intended as a comprehensive review, will outline the principles of affinity biosensors with respect to potential application areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号