首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds.  相似文献   

2.
A New 4-Nitrotoluene Degradation Pathway in a Mycobacterium Strain   总被引:4,自引:0,他引:4       下载免费PDF全文
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (λmax, 385 nm) was tentatively identified as 2-amino-5-methylmuconic semialdehyde, formed from 6-amino-m-cresol by meta ring cleavage.  相似文献   

3.
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.  相似文献   

4.
The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.  相似文献   

5.
The aerobic metabolism of fluorobenzene by Rhizobiales sp. strain F11 was investigated. Liquid chromatography-mass spectrometry analysis showed that 4-fluorocatechol and catechol were formed as intermediates during fluorobenzene degradation by cell suspensions. Both these compounds, unlike 3-fluorocatechol, supported growth and oxygen uptake. Cells grown on fluorobenzene contained enzymes for the ortho pathway but not for meta ring cleavage of catechols. The results suggest that fluorobenzene is predominantly degraded via 4-fluorocatechol with subsequent ortho cleavage and also partially via catechol.  相似文献   

6.
Nitrobenzene is degraded by Pseudomonas pseudoalcaligenes JS45 via 2-aminophenol to 2-aminomuconic semialdehyde, which is further degraded to pyruvate and acetaldehyde. Comamonas sp. JS765 degrades nitrobenzene via catechol to 2-hydroxymuconic semialdehyde. In this study we examined and compared the late steps of degradation of nitrobenzene by these two microorganisms in order to reveal the biochemical relationships of the two pathways and to provide insight for further investigation of their evolutionary history. Experiments showed that 2-hydroxymuconate, the product of the dehydrogenation of 2-hydroxymuconic semialdehyde, was degraded to pyruvate and acetaldehyde by crude extracts of Comamonas sp. JS765, which indicated the operation of a classical catechol meta-cleavage pathway. The semialdehyde dehydrogenases from Comamonas sp. JS765 and P. pseudoalcaligenes JS45 were able to metabolize both 2-amino- and 2-hydroxymuconic semialdehyde, with strong preference for the physiological substrate. 2-Aminomuconate was not a substrate for 4-oxalocrotonate decarboxylase from either bacterial strain. The close biochemical relationships among the classical catechol meta-cleavage pathway in Comamonas sp. JS765, 2-aminophenol meta-cleavage pathways in P. pseudoalcaligenes JS45, and an alternative 2-aminophenol meta-cleavage pathway in Pseudomonas sp. AP-3 suggest a common evolutionary origin. Received: 23 November 1998 / Accepted: 3 February 1999  相似文献   

7.
Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated.  相似文献   

8.
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.  相似文献   

9.
Most bacterial pathways for the degradation of aromatic compounds involve introduction of two hydroxyl groups either ortho or para to each other. Ring fission then occurs at the bond adjacent to one of the hydroxyl groups. In contrast, 2-aminophenol is cleaved to 2-aminomuconic acid semialdehyde in the nitrobenzene-degrading strain Pseudomonas pseudoalcaligenes JS45. To examine the relationship between this enzyme and other dioxygenases, 2-aminophenol 1,6-dioxygenase has been purified by ethanol precipitation, gel filtration, and ion exchange chromatography. The molecular mass determined by gel filtration was 140,000 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two subunits of 35,000 and 39,000 Da, which suggested an alpha2beta2 subunit structure. Studies with inhibitors indicated that ferrous iron was the sole cofactor. The Km values for 2-aminophenol and oxygen were 4.2 and 710 microM, respectively. The enzyme catalyzed the oxidation of catechol, 6-amino-m-cresol, 2-amino-m-cresol, and 2-amino-4-chlorophenol. 3-Hydroxyanthranilate, protocatechuate, gentisate, and 3- and 4-methylcatechol were not substrates. The substrate range and the subunit structure are unique among those of the known ring cleavage dioxygenases.  相似文献   

10.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

11.
Aromatic compounds and their substituted forms are hazardous to the environment. Biodegradation by microorganisms can be used to remove these pollutants from soil and water. During the present investigations, Pseudomonas sp. strain ST-4 was used for the degradation of 4-aminophenol. The strain was able to use 4-aminophenol as growth substrate showing growth up to 400 ppm on mineral salt media plates. In broth, degradation up to 84% was observed. Induction with 4-aminophenol proved to be effective as it increased the degradation rate more than by the uninduced cell. Biodegradation was found to be more effective than autoxidation of 4-aminophenol, indicating bioremediation as main process to eliminate aromatic amines. In order to locate the responsible genes for degradation, curing and then isolation of plasmid showed the involvement of plasmid encoded genes in this mechanism since the cured strains do not grow with 4-aminophenol.  相似文献   

12.
The aerobic metabolism of fluorobenzene by Rhizobiales sp. strain F11 was investigated. Liquid chromatography-mass spectrometry analysis showed that 4-fluorocatechol and catechol were formed as intermediates during fluorobenzene degradation by cell suspensions. Both these compounds, unlike 3-fluorocatechol, supported growth and oxygen uptake. Cells grown on fluorobenzene contained enzymes for the ortho pathway but not for meta ring cleavage of catechols. The results suggest that fluorobenzene is predominantly degraded via 4-fluorocatechol with subsequent ortho cleavage and also partially via catechol.  相似文献   

13.
Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showed a high dioxygenase activity only for 1,2,4-trihydroxybenzene, with Km and Vmax values of 9.6 μM and 6.8 μmol min−1 mg of protein−1, respectively.  相似文献   

14.
The phenol-degrading yeast Trichosporon mucoides can oxidize and detoxify biarylic environmental pollutants such as dibenzofuran, diphenyl ether and biphenyl by ring cleavage. The degradation pathways are well investigated, but the enzymes involved are not. The high similarity of hydroxylated biphenyl derivatives and phenol raised the question if the enzymes of the phenol degradation are involved in ring cleavage or whether specific enzymes are necessary. Purification of enzymes from T. mucoides with catechol cleavage activity demonstrated the existence of three different enzymes: a classical catechol-1,2-dioxygenase (CDO), not able to cleave the aromatic ring system of 3,4-dihydroxybiphenyl, and two novel enzymes with a high affinity towards 3,4-dihydroxybiphenyl. The comparison of the biochemical characteristics and mass spectrometric sequence data of these three enzymes demonstrated that they have different substrate specificities. CDO catalyzes the ortho-cleavage of dihydroxylated monoaromatic compounds, while the two novel enzymes carry out a similar reaction on biphenyl derivatives. The ring fission of 3,4-dihydroxybiphenyl by the purified enzymes results in the formation of (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid. These results suggest that the ring cleavage enzymes catalyzing phenol degradation are not involved in the ring cleavage of biarylic compounds by this yeast, although some intermediates of the phenol metabolism may function as inducers.  相似文献   

15.
Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and other nitroaromatic compounds. Bradyrhizobium JS329 was isolated from soil by selective enrichment with 5NAA. When grown on 5NAA, the isolate released stoichiometric amounts of nitrite and half of the stoichiometric amounts of ammonia. Enzyme assays indicate that the initial step in 5NAA degradation is an unusual hydrolytic deamination for formation of 5-nitrosalicylic acid (5NSA). Cloning and heterologous expression revealed the genes that encode 5NAA deaminase (naaA) and the 5NSA dioxygenase (naaB) that cleaves the aromatic ring of 5NSA without prior removal of the nitro group. The results provide the first clear evidence for the initial steps in biodegradation of amino-nitroaromatic compounds and reveal a novel deamination reaction for aromatic amines.The research on biodegradation/biotransformation of nitro compounds has focused on synthetic chemicals, but there are a substantial number of natural nitro-substituted compounds whose metabolism has not been explored. The biodegradation pathways for natural nitro compounds probably provided the metabolic diversity that enabled the rapid and recent evolution of pathways for degradation of synthetic nitro compounds.5-Nitroanthranilic acid (5-NAA), a natural nitroaromatic compound, is produced by Streptomyces scabies, but its physiological role is unclear (15). Synthetic 5NAA is used as the starting material for various nitroaromatic compounds and dyes (3). Substitution of the aromatic ring with amino, nitro, and carboxyl functional groups creates an interesting challenge for catabolic enzymes because any of the three groups could serve as a point of attack for dioxygenase enzymes prior to ring cleavage.Synthetic nitroanilines are toxic and used for the synthesis of pharmaceuticals, dyes, and pigments (27). In sewage, nitroanilines can be formed from the corresponding dinitroaromatic compounds under aerobic or anaerobic conditions (11). Early reports indicated that nitroanilines were resistant to biodegradation (1, 9, 11), but 4-nitroaniline was degraded by Pseudomonas sp. strain P6 (32) and Stenotrophomonas strain HPC 135 (26). Saupe reported that 3-nitroaniline could be degraded aerobically (27). The biodegradation pathways of nitroanilines are unknown, and they are typically classified as nondegradable or poorly degradable compounds (27).As part of a search for novel metabolic diversity and an effort to study the degradation pathway for recalcitrant nitroanilines, we report here the biodegradation of 5NAA as the sole carbon, nitrogen, and energy source by Bradyrhizobium JS329. The degradation pathway involves an unusual hydrolytic removal of the amino group and subsequent ring fission without prior removal of the nitro group.(A preliminary report of this work was presented at the 109th General Meeting of the American Society for Microbiology, 2009 [25].)  相似文献   

16.
The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.  相似文献   

17.
Cholesterol is one of the most ubiquitous compounds in nature. The 9,10-seco-pathway for the aerobic degradation of cholesterol was established thirty years ago. This pathway is characterized by the extensive use of oxygen and oxygenases for substrate activation and ring fission. The classical pathway was the only catabolic pathway adopted by all studies on cholesterol-degrading bacteria. Sterolibacterium denitrificans can degrade cholesterol regardless of the presence of oxygen. Here, we aerobically grew the model organism with 13C-labeled cholesterol, and substrate consumption and intermediate production were monitored over time. Based on the detected 13C-labeled intermediates, this study proposes an alternative cholesterol catabolic pathway. This alternative pathway differs from the classical 9,10-seco-pathway in numerous important aspects. First, substrate activation proceeds through anaerobic C-25 hydroxylation and subsequent isomerization to form 26-hydroxycholest-4-en-3-one. Second, after the side chain degradation, the resulting androgen intermediate is activated by adding water to the C-1/C-2 double bond. Third, the cleavage of the core ring structure starts at the A-ring via a hydrolytic mechanism. The 18O-incorporation experiments confirmed that water is the sole oxygen donor in this catabolic pathway.  相似文献   

18.
19.
Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated.  相似文献   

20.
Microbial metabolism of nitroarenes via o-aminophenols requires the participation of two key enzymes, a nitroreductase and an hydroxylaminobenzene mutase. The broad substrate ranges of the enzymes suggested that they could be used as biocatalysts for the production of substituted o-aminophenols. We have used enzymes from Pseudomonas pseudoalcaligenes JS45 for the conversion of 4-nitrobiphenyl ether to the corresponding o-aminophenol. Partially purified nitrobenzene nitroreductase reduced 4-nitrobiphenyl ether to the corresponding 4-hydroxylaminobiphenyl ether. Partially purified hydroxylaminobenzene mutase stoichiometrically converted the intermediate to 2-amino-5-phenoxyphenol. The results indicate that the enzyme system can be applied for the production of o-aminophenols useful as intermediates for synthesis of commercially important materials. Journal of Industrial Microbiology & Biotechnology (2000) 24, 301–305. Received 13 October 1999/ Accepted in revised form 31 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号